Tiaa e

o

f

S

i

= o e = o :

S : o -

A

i

= Sd -




=R AY"

Any shipment to a country outside of the
United Stated requires a U.S. Government
. export license.

CRAY COMPUTER SYSTEMS

CRAY-2 COMPUTER SYSTEM
FUNCTIONAL DESCRIPTION

HR-2000

Copyright® 1985 by CRAY RESEARCH, INC. This manual or
parts thereof may not be reproduced in any form without
permission of CRAY RESEARCH, INC.



CRRANY

RECORD OF REVISION RESEARCH, INC. PUBLICATION NUMBER HR-2000

Each time this manual is revised and reprinted, all changes issued against the previous version in the form of change packets are
incorporated into the new version and the new version is assigned an alphabetic level. Between reprints, changes may be issued
against the current version in the form of change packets. Each change packet is assigned a-numeric designator, starting with
01 for the first change packet of each revision level,

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner, hanges to c?art of a page are noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in the same place indicates that information has been moved from
one page to another, but has not otherwise changed.

Requests for copies of Cray Research, Inc. publications and comments about these publications should be directed to:
CRAY RESEARCH, INC.,

1440 Northland Drive,

Mendota Heights, Minnesota 55120

Revision Description
May 1985 - Original printing.

HR-2000 ii




" PREFACE

This publication describes the functions of the CRAY-2 Computer System
and the CRAY Assembly Language (CAL) Version 2 symbolic machine
instructions specifically used with this machine. It is written to
assist programmers and engineers and assumes a familiarity with digital
computers and assemblers.

The manual describes the overall computer system including its
configuration and characteristics. It also describes the operation of
the Common Memory, Foreground Processor, and Background Processors. Both
the machine code and the associated symbolic machine instructions are
explained.

Site planning information for the CRAY-2 Computer System is available in
the CRAY-2 Site Planning Reference Manual, publication HR-2001.

Additional information on the CRAY Assembly Language (CAL) Version 2 is
available in the CAL Assembler Version 2 Reference Manual, publication
SR-2003.

1770707777777 7777777707707777777777707777/0777/77777777777
WARNING

This equipment generates, uses, and can radiate radio
frequency energy and if not installed and used in
accordance with the instructions manual, may cause
interference to radio communications. It has been
tested and found to comply with the limits for a Class
A computing device pursuant to Subpart J of Part 15 of
FCC Rules, which are designed to provide reasonable
protection against such interference when operated in a
commercial environment. Operation of this equipment in
a residential area is likely to cause interference in
which case the user at his own expense will be required
to take whatever measures may be required to correct
the interference.

L1117 777777777777777777777777770777/07077777007/77777777777

HR-2000 iii






CONTENTS

PREFACE

1. INTRODUCTION

-

- - -

1.1

=
. .
w N

. . . . . - . . . - . . . - . . .

. » . . . . . . . . . . . . . - .

CRAY-2 FEATURES . . .« ¢ o o o o o « o o

1.1.1
1.1.2

Physical characteristics . . . . .
Architecture and design . . . . .

CONVENTIONS . . o ¢ ¢ v o o o o o o o » o
MANUAL DESCRIPTION . . . .+ &« o« o o o o o &

2. BACKGROUND PROCESSOR & &« ¢ ¢ & o o o o o o « « =

2.1

2.2

2.3

HR-2000

CONTROL SECTION . . . . « & & o o o o « &

2.1.1

N NN
R e
.« e
oW N

Instruction issue and control . . .

Program Address register . . . . .
Instruction buffers . . . . . . .
Instruction issue . . . . . . . .
Real-time clock . . . . « & . . .
Semaphore flags . . . . . .« .« « .
Common Memory field protection . .
Base Address register . . . . . .
Limit Address register . . . . . .
Memory range error . . .« .« s« & o &

OPERATING REGISTERS . . . ¢ « « & & & ¢ &+ .

2.2.1 Address registers . . . . . . . .
2.2.2 Scalar registers . . . . . . . . .
2.2.3 Vector registers . . . . . . . . .
VECTOR CONTROL REGISTERS . . . « « « + . .
2.3.1 Vector Length register . . . . . .
2.3.2 Vector Mask register . . . . . . .

FUNCTIONAL UNITS . . . v ¢ v o o « s o o« &

2.4.1

.

N NDNDNDNDNNNNDDN
Lo I T L
O 00 NG U W

[

.

.

Address Add functional wnit . . .
Address Multiply functional unit .
Scalar Integer functional unit . .
Scalar Shift functional unit . . .
Scalar Logical functional unit . .
Vector Integer functional unit . .
Vector Logical functional unit . .
Floating-point Add functional unit
Floating-point Multiply functional
Local Memory . . + & « o o o« o « &

iii

L L R L P S D I A |

[ L L T P T e T | U
OWWWOWWOWWOWN-TOOUT U OO DD wWwWwWwWWR e

NN NN NDNDDNNDNDDNNDNNDDNDNNNRNNDNRNDNNDNDNRNRNDND N NN
) 1
i
o oo

|
Juy
o



2. BACKGROUND PROCESSOR (continued)

2.5 ARITHMETIC OPERATIONS . &« ¢ & ¢ o o o o o & o s » o o« = 2-11
2.5.1 Integer arithmetic . . .+ « « v & +« « « « o 4 . . 2-11

2.5.2 Floating-point arithmetic . . . . . « « ¢ & .« 2-11
Normalizing . . o ¢ ¢« ¢« ¢ o o o o o« o o o o o 2-12

Range errorsS . . .« « « « o o s o o o & & s s e s 2-13
Floating-point addition . . . . . « &« ¢« &+ « & & 2-13
Floating-point subtraction . . . . . . . . . . 2-13

Floating-point to integer conversion . . . . . . 2-14
Integer to floating-point conversion . . . . . . 2-14
Floating-point product . . . . .+ « « « « + & . . 2-14
Reciprocal approximation . . .« « + « « « « + . . 2-16
Reciprocal iteration . . . « + ¢« « 4% ¢ o o« o+ o . 2-17
Reciprocal square root approximation . . . . . . 2-17
Reciprocal square root iteration . . . . . . . . 2-19

3. BACKGROUND PROCESSOR SYMBOLIC MACHINE INSTRUCTIONS . . . . . . 3-1

3.1 SYMBOLIC INSTRUCTION FORMAT . . .« & « 4 « s o o« o o o 3-1
3.2 MACHINE INSTRUCTION FORMAT . . . . &« « ¢ « o o o 2 o o & 3-2
3.3 INSTRUCTION DESCRIPTIONS . . « & « o & o o o o o o o o o 3-3

4. COMMON MEMORY . & & & ¢ o o o o « o« s o o o o o o o o o o o 4-1

4.1 MEMORY ADDRESSING . . . « ¢ « o o o o o s s s o o o & 4-1
4.2 MEMORY ACCESS . . o ¢ ¢ o 4 o o o o o o o & » « o « o 4-2
4.3 MEMORY CONFLICTS . . . ¢ « ¢ & % o o o o 3 o o o » « o = 4-2
4.4 4-2
4.5 4-3

MEMORY BACKUP . .+ + ¢ ¢ ¢ o o o o 2 o o o s o o s o o =
MEMORY ERROR CORRECTION . . &« & ¢ « o « o o o s o o« o«

5. FOREGROUND SYSTEM . . ¢ « « « &+ o o & o o o o s o » o o o @ 5-1

.1 FOREGROUND COMMUNICATION CHANNELS . . . « .« « « + + . =
.2 FOREGROUND CHANNEL PORTS . . . . ¢ ¢ « o o « o s s « + =

5.2.1 Common Memory Ports « o ¢ o o ¢ o o o s o o o

5.2.2 Background Processor POrts . .« « ¢ o & & « & o .
5.3 DISK STORAGE UNITS . . .+ ¢ ¢ &+ o o o o o o o o s o s+ o
5.3.1 Disk system organization . . . . . . .+ ¢ « . . .
FRONT-END INTERFACE . . . &+ ¢ & ¢ o o o o o » s o o o &
FOREGROUND PROCESSOR . . « v ¢ « o o o o s o o o o« o o »
MAINTENANCE CONTROL CONSOLE . ¢ v & « o o o o o« « o o =

5
5

L

(S22 RS R G L RS R C L S ® IS
i
YU B W W W NN

(2986200 8, |
.
[ Q¢ I -1

HR-2000 vi



APPENDIX SECTION

A. SYMBOLIC MACHINE INSTRUCTIONS LISTED BY FUNCTIONALITY . . . . A-1
Al SYMBOLIC NOTATION . . . & o o o o o o o o o s « 2 o o A-1
A.2 BRANCH INSTRUCTIONS . .« « & «o o o o o « o o o o o s 2 A-3

A.2.1 Conditional branches . . « « + ¢« « o« o + o o o = A-3

A,2.2 Unconditional jumps . « « « v o o o o o o o & A-4

A,2.3 EBXIES & &+ o o o o o o o o o o @ o s e e e+ e . s A-4

A.3 PASS INSTRUCTIONS & & &+ + & o o o o o o o o o o o o o A-4
A.4 SEMAPHORE INSTRUCTIONS . . « ¢ « o o o s o o o s o s o« - A-4
A.5 REGISTER ENTRY INSTRUCTIONS . &« « &« & ¢ o o o o o o o = A-5
A.5.1 Entries into A registers . . . « .+ « ¢« + « « o A-5

A.5.2 Entries into S registers . « . « « « ¢« + 4 4 . A-6

A.6 INTER-REGISTER TRANSFER INSTRUCTIONS . . . . . . . . . & A-7
A.6.1 Transfers to A registers « . « « & « ¢ + o o o« = A-17

A.6.2 Transfers to S registers . . « « & « ¢ + o « o & A-7

A.6.3 Transfers to V registers . « « .+ « o« « v o o« o & A-8

A.6.4 Transfer to Vector Mask register . . . . . . . . A-8

A.6.5 Transfer to Vector Length register . . . . . . . A-8

A7 MEMORY TRANSFER INSTRUCTIONS . . o + o « o « o o o « o A-9
A.7.1 SEOLES & & v s & o o o o o o o o o o o o o o @ s A-9
A.7.2 LOBAS « ¢« o o o o o o o o o o o & o o o o . s A-11

A.8 INTEGER ARITHMETIC OPERATION INSTRUCTIONS . . . . . . . A-13
' A.8.1 Integer SUMS + + « « « o o o o « o o o & o o o A-13
A.8.2 Integer differences . . « « o ¢« ¢ « o o o o o A-13
A.8.3 Integer products . . +« ¢ ¢ ¢ 4 o 0 e e e e e s e A-14

A.9 FLOATING-POINT ARITHMETIC OPERATION INSTRUCTIONS . . . . A-14
A.9.1 Floating-point sums . . . « « « « & o + & « o« . A-14

A.9.2 Reciprocal iterations . . . . . . ¢« ¢ .+ . 4 . . A-15
A.9.3 Reciprocal approximations . . « . « « . . « . . A-15
A.9.4 Floating-point differences . . . . . . . . . . . A-15
A.9.5 Integer to floating-point conversions . . . . . A-16
A.9.6 Floating-point to integer conversions . . . . . A-16
A.9.7 Floating-point products . . . + « « ¢« « o« « « . A-16
A.9.8 Square root iterations . . . . . . . . . . . . . A-17
A.9.9 Square root approximations . . . .« ¢ . . . . . . A-17
A.9.10 Floating-point e€rrors . . « o « « « & o o« o o A-17

A.10 LOGICAL OPERATION INSTRUCTIONS . . . & « « « o« & & & o = A-18
A.10.1 Logical products . . « o « o s o o o s o o o o A-18
A.10.2 Logical SUMS .+ +. + ¢ + o o « « o o o o o« o+ o . . A-19
A.10.3 Vector streaming . . . « + + ¢ o« ¢ « o« + o« « o o A-19
A.10.4 Logical differences . . « « ¢ ¢ « « o« « « + o« &+ « A-19
A.10.5 Vector mask . . ¢ + ¢ o o o ¢ o o o« o o o« & « « » A-20
A.10.6 Compressed iota . . « « « & « « « & « « « « o+ . . A-20

A.11 BIT COUNT INSTRUCTIONS . . &« « & ¢ o o « o s + + « « = o A=-21

A.12 SHIFT OPERATION INSTRUCTIONS . . . . + « &« & « « s » « o« A=22
A.12.1 Left shifts . . ¢« + « & « 4 ¢« & &« & « o « « « « . A-22
A.12.2 Right shifts . . . ¢ ¢« ¢ ¢ « ¢« & « & & « « « « « A-22

HR-2000 vii



FIGURES

CRAY-2 Mainframe . . . « o o & s o o o s o o s o o o
CRAY-2 Mainframe Configuration . . . « . . + « .« .« .
Control and Data Paths in a Background Processor . .
Floating-point Data Format . . . « « « « ¢ &« « « o &
48-by-48 Bit Matrix Used for Floating-point Product
48-by-48 Bit Matrix Used for Reciprocal Iteration .
48-by-48 Bit Matrix Used for Square Root Iteration .
Instruction Parcel Format . . ¢ « « « + v o o« « » o
Memory Address for Common Memory . . . . &+ . « & « &
Error Correction Matrix . . . . . . ¢ .« .+ &+ + + .« .
Channel LOOP + « + « v « & ¢ o o « & s+ o s+ o s o «

DD WNNNNN R
]
PN R R U W RN R

HR-2000 viii

U
N oUW

|
=
N

[ {
O v

GV b W NN NN N e
| | i
N NN R




1. INTRODUCTION

The CRAY-2 computer is a powerful, general-purpose computer system with
extremely high processing rates. Scalar and vector capabilities in a
multiprocessing environment combined with integrated foreground
processing achieve these high rates.

1.1 CRAY-2 FEATURES

The CRAY-2 mainframe contains four independent Background Processors,
each more powerful than a CRAY-1 processor. Featuring a clock-cycle time
faster than any other computer system available, each of these processors
offers exceptional scalar and vector processing capabilities. The four
Background Processors can operate independehtly on separate jobs or
concurrently on a single problem. The very high speed Local Memory
integral to each Background Processor is available for temporary storage
of vector and scalar data.

Common Memory is one of the most important features of the CRAY-2. It
consists of 256 million 64-bit words randomly accessible from any of the
four Background Processors and from any of the high-speed and common data
channels. The memory is arranged in quadrants with 128 interleaved
banks. All memory access is performed automatically by the hardware.

Any user may use all or part of the memory not being used by the
operating system.

Control of network access equipment and the high-speed disk drives is
integral to the CRAY-2 mainframe hardware. A single Foreground Processor
coordinates the data flow between the system's Common Memory and all the
external devices across four high-speed I/0 channels. The synchronous
operation of the Foreground Processor with the four Background Processors
and the external devices provides a significant increase in data
throughput.

The most important CRAY-2 features are:
. Extremely large directly addressable Common Memory
. Fastest cycle time available in a computer system
. Scalar, vector, and multiprocessing combined in one system

. Integral Foreground Processor

HR-2000 1-1



. Elegant architecture
. Extremely high reliability
. High density memory chips and extremely fast silicon logic chips

. Liquid immersion cooling

1.1.1 PHYSICAL CHARACTERISTICS

The CRAY-2 mainframe is élegant in appearance as well as in architecture
(see figure 1-1). The memory, computer logic, and DC power supplies are
integrated into a compact mainframe composed of 14 vertical columns
arranged in a 300° arc.

The upper part of each column contains a stack of modules and the lower
part contains power supplies for the system. Total cabinet height,
including the power supplies, is 45 inches; the diameter of the mainframe

is 53 inches. Thus, the "footprint"” of the mainframe is a mere 16 square
feet of floor space.

An inert fluorocarbon liquid circulates in the mainframe cabinet in
direct contact with the integrated circuit packages. This liquid
immersion cooling technology allows for the small size of the CRAY-2
mainframe and is thus largely responsible for the high computation rates,
Significant CRAY-2 physical characteristics are:

. Occupies only 16 sq ft of floor space

. Stands 45 inches high (diameter is 53 inches)

. Contains 14 columns arranged in a 300° arc

. Contains 3-dimensional modules

. Contains liquid immersion cooling

. Contains chilled water heat exchange

HR-2000 1-2




HR-2000

S

-

Figure 1-1.

L

1353

CRAY-2 Mainframe



1.1.2 ARCHITECTURE AND DESIGN
In addition to the cooling technology, the extremely high processing
rates are achieved by a balanced integration of scalar and vector

capabilities and a large Common Memory in a multiprocessing environment.

Significant architectural components of the CRAY-2 Computer System
include the following:

. Four independent Background Processors capable of vector and
scalar operation. Synchronization of the Background Processors is
achieved through the Foreground Processor and semaphore flags in
the Background Processors.

. 256 megawords of dynamic Common Memory

. A foreground system that controls and monitors system operation,
including:

- A Foreground Processor for system supervision

- Four high-speed synchronous communication channels

-~ Up to 40 I/0 Devices

- Disk controllers to control up to 36 disk storage units
-~ Four Common Memory ports for data transfer

- Four Background Processor ports to allow Foreground
Processor control

- Front-end Interfaces (from one to as many as four per
channel)

The four identical Background Processors each contain registers and
functional units to perform both vector and scalar operations. The
single Foreground Processor supervises the four Background Processors.
The large Common Memory complements the processors and provides
architectural balance, thus assuring extremely high throughput rates (see
figure 1-2).

On-site maintenance is possible via the maintenance control console.

HR-2000 1-4




Common Memory

Common
Memory
Port

Background
Processor

Background

L} Processor

Port

Common
Memory
. Port

Common
Memory
Port

Background
Processor

Background
Processor
Port

Disk
Controllers

]

Front-end
Interface

Disk
Controllers

Front-end
Interface

Common
Memory
Port

Background
Processor

Background

..l Processor

Port

Disk
Controllers

Front-end
Interface

Background
Processor

Background

| Processor

Port

Disk
Controllers

Front-end
Interface

Foreground Processor

HR-2000

Figure

1-2.

CRAY-2 Mainframe Configuration



1.2

CONVENTIONS

The following conventions are used in this manual.

Convention

lowercase
italics

cp
(Sl)l(sz)l etc.
A, a, S, s,

V, v register
designators

Register bit
designators

Description

Variable information

Clock period
The contents of registers S1, S§2, etc.

For example, "Tramsmit (ag) to s;" means
"Transmit the contents of the A register
specified by the k designator to the S register
specified by the I designator".

Numbered right to left as powers of 2, starting
with 20. Bit 203 of an S or V register value
represents the most significant bit. Bit 231

of an A register value represents the most
significant bit. The Vector Mask register has 64
bits, each corresponding to a word element in a
Vector register. Bit 263 corresponds to

element 0, bit 20 corresponds to element 63.

Unless otherwise indicated, numbers in this manual are decimal numbers.
Octal numbers are indicated with an 8 subscript. Exceptions are register
numbers, channel numbers, instruction parcels in instruction buffers, and
instruction forms which are given in octal without the subscript.

1.3 MANUAL DESCRIPTION

Section 1 Contains the introduction to this manual

Describes the CRAY-2 Background Processor. The
registers, functional units, and algorithms used are
described.

Section 2

HR-2000 1-6




Section 3

Section 4

Section 5

Appendix A

HR-2000

Provides detailed information on the CAL instructions
that operate on the CRAY-2. Each machine instruction
can be represented symbolically in CRAY Assembly
Language (CAL) Version 2. The instructions are listed
octally in a box format that provides the CRAY Assembly
Language (CAL) Version 2 syntax format, an operand if
required, a brief description of each instruction, and
the machine instruction.

Following the boxed information is a detailed
description of the instruction and an example using the
instruction.

Describes the CRAY-2 Common Memory, phased memory
access, and single error correction/double error
detection (SECDED)

Describes the CRAY-2 foreground system, which handles
the I/0

Lists the symbolic machine instructions by function.
The octal machine code may be used as an index to refer
to section 3 for a detailed description of the
instruction,






2. BACKGROUND PROCESSOR

The CRAY-2 computer contains four identical Background Processors. Each
Background Processor contains operating and vector control registers and
functional units to perform both vector and scalar operations. The
Foreground Processor supervises the four Background Processors.

A Background Processor performs arithmetic and logical calculations.
These operations, and the other functions of a Background Processor, are

coordinated through the control section.

Control and data paths for one Background Processor are shown in
figure 2-1.

2.1 CONTROL SECTION

Each Background Processor contains an identical, independent control
section of registers and instruction buffers for instruction issue and
control. The following control mechanisms are described in this section.

. Instruction issue and control

. Real-time clock

. Semaphore flags to provide interlocks for Common Memory access
. Common Memory field protection

2.1.1 INSTRUCTION ISSUE AND CONTROL
Each Background Processor contains a Program Address register, an

instruction buffer with eight fields, and an instruction issue control
mechanism to implement instruction issue and control.

Program Address register

Each Background Processor has a 32-bit Program Address (P) register
indicating the address of the program instruction parcel currently in the
issue position during normal operation. The Foreground Processor loads
the P register with data at the beginning of a computation period. As
each parcel issues from the instruction queue, the content of the P
register advances by 1.

The P register content is reset to the branch destination address when a
jump instruction is executed.

HR-2000 2-1



FLOATING POINT FUNCTIONAL UNITS
' ADD
FOREGROUND ——————3p»1 ‘RECIPROCAL

SQUARE ROOT =1 MULTIPLY
LOOK-UP TABLE
VT i | muLmieLy,
——————3Si¥i_{ “RecipROCAL,
V6 Sk-Vk SQUARE ROOT)
V5 u ;
- v4
V3 fod
V2
- VECTOR FUNCTIONAL UNITS
I LOGICAL
00 VO
INTEGER
Vi Vi ]
; - (ADD, SHIFT, POP/
/£ vive Si¥kg? pamrTy,L2.10TA)
Vi Vi a3
77
VECTOR CONTROL VECTOR MASK g
SCALAR_FUNCTIONAL UNITS
INTEGER
Si8jSk
Si (ADD, POP/PARITY
LEADING ZERO)
ik
sivil Ysisjvi
LOCAL MEMORY
2 AKk A
COMMON ADDRESS FUNCTIONAL UNITS
MULTIPLY
MEMORY pres
Aj Ak
A
VECTOR CONTROL
INSTRUCTION BUFFERS,
INSTRUCTION | 1o Lo 1
ISSUE | s i - issUE
QUEUE
AR T
7 P STATUS STATUS BASE UMIT
i
3
-+ ;
e
e femmmmm = E>1 BACKGROUND CPU A
BACKGROUND CPU'B R CPU AD
BACKGROUND CPUC SEMABHORE FLAGS
- »{ BA cPUD o7
FOREGROUND
- 1 CROCESSOR 1 1/0 INTERFACES | —————» EXTERNAL DEVICES
1321

Figure 2-1. Control and Data Paths in a Background Processor

HR-2000 2-2



Instruction buffers

Each Background Processor has a buffer with eight independent fields to
allow program loops to execute without additional Common Memory
references. Programs can loop within the instruction buffer using any of
the branch instructions.

Each independent field contains 16 words. The total instruction buffer

size is 128 words.

The next sequential instruction out of the instruction buffer or a branch
out of the instruction buffer discards the oldest data field and replaces
it with 16 words of new data.

Instruction issue

Background instructions are translated in several steps and are allowed
to issue sequentially by an instruction issue control mechanism. The
words are disassembled into 16-bit parcels that are placed in a queue
where the translation occurs. The instruction issue process involves
checking the reservation flags for the registers and functional unit
involved in the instruction sequence. The parcel waits in issue position
in the instruction queue until all required resources are free.

Instruction parcels and 16-bit constants are intermixed in the instruction
queue. The constant parcels are passed through the instruction queue
without test.

2.1.2 REAL-TIME CLOCK

Each Background Processor has a 64-bit register that counts continuously
at the clock period rate. This count value is used to determine the
passage of real time to an accuracy of 1 clock period. The real-time
clocks in the Background Processors are synchronized at deadstart.
Instruction 115 reads the real-time clock.

2.1.3 SEMAPHORE FLAGS

To synchronize Common Memory references, eight semaphore flags in the
background system interlock Common Memory references when multiple
Background Processors are executing a single job. One semaphore flag is
assigned to each currently active job in the background system. A
Background Processor assigned to a job is assigned a semaphore flag at
the same time,

HR-2000 2-3



The Background Processor uses four instructions in synchronizing its
Common Memory references: 004, 005, 006, and 007. A 004 or 005
instruction requests the semaphore flag when the Background Processor
program is accessing a Common Memory area that can interfere with other
processors assigned to the job. The branch instruction results determine
when the processor has exclusive access to this Common Memory area. The
program must clear the semaphore flag to release the Common Memory area
to another processor assigned to the same job.

2.1.4 COMMON MEMORY FIELD PROTECTION

At execution time each object program has a designated field of Common
Memory holding instructions and data. Field limits are specified by the
foreground functions when the object program is loaded and initiated.
Field limits are contained in the Base Address (BA) register and the
Limit Address (LA) register.

All memory addresses contained in the object program code are relative to
the base address beginning the defined field. An object program cannot
read or alter any Common Memory location with an absolute address lower
than the base address. Each object program reference to Common Memory is
checked against the limit and base addresses to determine if the address
is within the assigned bounds.

Base Address register

Each Background Processor has a 32-bit BA register. The BA register
defines the lower boundary of the Common Memory address field. The
Foreground Processor enters data into this register while the Background
Processor is in idle mode. The data remains in the register for the
duration of the Background Processor computation period. /

Each Common Memory reference from the Background Processor includes the
addition of the BA register content to the other parts of the memory
reference base address. All Background Processor references to Common
Memory are relative to the base address boundary.

Limit Address register

Each Background Processor has a 32-bit LA register. The LA register
defines the upper boundary of the Common Memory address field. The
Foreground Processor enters data into this register while the Background
Processor is in idle mode. The data remains in this register for the
duration of the Background Processor computation period.

HR-2000 2-4




Ry

Memory range error

When a memory reference exceeds the range limits, a memory range €rror
occurs. Each Common Memory reference from the Background Processor
includes a test of the resulting absolute Common Memory address against
the contents of the BA and LA registers. An error signal is sent to the
status register if the resulting absolute Common Memory address is less
than the base address or equal to, or greater than, the limit address. A
read reference results in zero data for this case. A write reference is
aborted.

2.2 OPERATING REGISTERS

Each Background Processor contains the following independent set of
operating registers.

. Address
. Scalar
. Vector

Operating registers, a primary programmable resource of the Background
Processor, enhance the speed of the system by satisfying heavy demands

.for data made by functional units. Different functional units can be

used concurrently.

2.2.1 ADDRESS REGISTERS

Eight 32-bit Address (A) registers are used primarily to calculate memory
locations for Local Memory and Common Memory references. A registers are
used for 32-bit integer calculations and moving data directly from Local
Memory. Data is also transferred between Address and Scalar registers.

2.2.2 SCALAR REGISTERS

Eight 64-bit Scalar (S) registers serve as source and destination for
operands executing scalar arithmetic and logical instructions. S
registers can furnish one operand in vector instructions.

The eight’ 64-bit S registers in a Background Processor support Vector
registers in operations when one element of the computation is a constant
value. The S registers function as computational way stations between
Common Memory and the functional units where vector implementation of the
work is not possible.

HR-2000 2-5



2.2.3 VECTOR REGISTERS

The major computational registers of the Background Processor are eight
Vector (V) registers, each having 64 elements. Each V register element
has 64 bits. When associated data is grouped into successive elements of
. a V register, the register quantity is treated as a vector. Examples of
vector quantities are rows or columns of a matrix, and elements of a
table.

Computational efficiency is achieved by identically processing each
element of a vector. Vector instructions provide for the iterative
processing of successive V register elements. A vector operation begins
by obtaining operands from the first element of one or more V registers
and delivering the result to the first element of a V register.
Successive elements are provided during each clock period, and as each
operation is performed the result is delivered to successive elements of
the result V register. Vector operation continues until the number of
operations performed by the instruction equals a count specified by the
content of the Vector Length register (described later in this section).

Since many vectors exceed 64 elements, longer vectors are processed as
one or more 64-element segments and a possible remainder of less than 64
elements.

The instruction issue control mechanism reserves the V registers that are
involved in a functional unit operation. One, two, or three Vector
registers can be involved, depending on the specific instruction. The
functional unit is reserved at the same time as the V registers. The
instruction sequence can then proceed to the next instruction and
initiate concurrent activity as long as the resources reserved are not
required.

The i, j, and k designators in a vector instruction can have the

same value; it is advised, however, that the I designator always has a
unique value. In the case of identical source operands, the data is
streamed from the same V register to both data paths. In the case of a
Destination register that is the same as a Source register, the V
register writing function takes priority over reading. When this occurs,
the reading vector delivers all zero words to the functional unit.

2.3 VECTOR CONTROL REGISTERS

The Vector Length register and the Vector Mask register provide control
information needed in the performance of vector operations.

HR-2000 2-6




2.3.1 VECTOR LENGTH REGISTER

The Vector Length (VL) register is a 6-bit special purpose register
explicitly referenced in the Background Processor instructions. The VL
register holds the vector length during a portion of the background
computation. All vector operations capture the vector length at the time
of instruction issue from the VL register.

Vector registers always begin a read or write operation at the zero
element position in the V register. Elements are read or written
sequentially for the length of the current vector data. A short vector
after a long vector leaves the old vector data in those positions not
replaced with new data.

Values allowed in the VL register are 0 through 63. A zero value is
interpreted as 64. Background instructions 025 and 036 communicate
explicitly with the VL register. '

2.3.2 VECTOR MASK REGISTER

The Vector Mask register (VM) is a 64-bit special purpose register
explicitly referenced by the Background Processor instructions. The VM
register merges vector data according to a set of precomputed Element
flags. In effect, it provides a vehicle for implementing vector branch
operations. :

One bit of the VM register is associated with each element in the
64-element vector registers. The high-order bit (203) of the vector
mask corresponds to element 0 of the vector data. The bits of the mask
then proceed in order to represent the following vector elements,

The vector mask data can be formed by a vector operation in which each
element is evaluated for a specific criterion. Instructions 030 through
033 perform these tests. The VM register is cleared at the beginning of
these instruction sequences and then bits are entered one at a time as
the vector stream passes the test station.

The vector mask data can be used to merge two vector streams into a
single result stream. Instructions 146 and 147 are used for this
purpose. Elements of the j operand are selected when the mask contains
1 bits. Elements of the k operand are selected when the mask contains
0 bits.

Instructions 034 and 114 move data between the VM register and an S
register.

HR-2000 2-7



2.4 FUNCTIONAL UNITS

Each Background Processor has a set of functional units to implement
algorithms for the instruction set. A number of functional units can
operate simultaneously. Each functional unit produces one result per
clock period. No information is retained in a functional unit for
reference by subsequent instructions.

A functional unit receives operands from registers and delivers the
result to a register when the function has been performed. Functional
units operate essentially in three-address mode. Nonvector functional
units can accept operands as fast as the instructions can issue.

A functional unit engaged in a vector operation remains busy for the
duration and cannot participate in other operations. In this state, the
functional unit is reserved. Other instructions requiring the same
functional unit will not issue until the previous operation is
completed. Only one functional unit of each type is available to the
vector instruction hardware. When the vector operation completes, the
reservation is dropped and the functional unit is then available for
another operation.

Each Background Processor has the following set of functional units.

. Address Add

. Address Multiply

. Scalar Integer

. Scalar Shift

. Scalar Logical

. Vector Integer

. Vector Logical

. Floating-point Add

. Floating-point Multiply

In addition, a Background Processor contains a Local Memory which is a
buffer for the A, S, and V register data.

2.4.1 ADDRESS ADD FUNCTIONAL UNIT

The Address Add unit performs 32-bit integer addition and subtraction of
two A register operands. (Instruction 020 performs integer sums and 021
performs integer differences.) This unit can accept address operands as
fast as the instructions can issue.

HR-2000 2-8




2.4.2 ADDRESS MULTIPLY FUNCTIONAL UNIT

The Address Multiply unit performs 32-bit integer multiplication of two A
register operands. (Instructions 022 and 023 perform integer products.)
This unit can accept address operands as fast as the instructions can
issue.

2.4.3 SCALAR INTEGER FUNCTIONAL UNIT

The Scalar Integer unit performs 64-bit integer addition and subtraction
of S register operands. (Instruction 104 performs integer sums and 105
performs integer differences.) It also performs population count
(instruction 106ij0), population count parity (instruction 106ij1),

and leading zero (instruction 107). This unit can accept scalar operands
as fast as the instructions can issue.

2.4.4 SCALAR SHIFT FUNCTIONAL UNIT

The Scalar Shift unit shifts the entire 64-bit contents of an S register
(instruction 110 left or 111 right) or the double 128-bit contents of two
concatenated S registers {(instruction 112 left or 113 right). This unit
can accept scalar operands as fast as the instructions can issue.

2.4.5 SCALAR LOGICAL FUNCTIONAL UNIT

The Scalar Logical unit manipulates bit-by-bit the 64-bit quantities
obtained from S registers. (Instruction 100 performs logical products,
101 performs logical products complemented, 102 performs logical
differences, and 103 performs logical sums.) This unit can accept scalar
operands as fast as the instructions can issue.

2.4.6 VECTOR INTEGER FUNCTIONAL UNIT

The Vector Integer unit performs vector shifts (150 for left single, 151
for right single, 152 for left double, and 153 for right double), vector
integer arithmetic (160 and 161 for integer sums and 162 and 163 for
integer differences), vector population count (164ij0 for population
count and 164ijl for population parity), vector leading zero count
(165), and compressed iota (176). The unit can accept operand data each
clock period, and after a transit time delay, can deliver a result each
clock period.

HR-2000 2-9



2.4.7 VECTOR LOGICAL FUNCTIONAL UNIT

The Vector Logical unit manipulates bit-by-bit the 64-bit quantities from
two V registers or from V registers and S registers (140 and 141 logical
products, 142 and 143 for logical differences, and 144 and 145 for
logical sums). The unit can accept operand data each clock period, and
after a tramsit time delay, can deliver a result each clock period.

2.4.8 FLOATING-POINT ADD FUNCTIONAL UNIT

The Floating-Point Add unit performs addition or subtraction of 64-bit
operands in floating-point format for both scalar and vector operations.
It also performs the conversion between integer and floating-point.
Refer to discussion of floating-point arithmetic for a description of
the instructions that use this unit.

The unit is reserved for the time of a vector stream during execution of
vector addition instructions. The unit can accept vector operand data
each clock period, and after a transit time delay, can deliver a result
each clock period. The unit can accept scalar references as fast as they
issue if the unit is not processing vector data.

2.4.9 FLOATING-POINT MULTIPLY FUNCTIONAL UNIT

The Floating-Point Multiply unit performs full multiplication of 64-bit
operands in floating-point format for both scalar and vector operations.
It also performs reciprocal approximation, reciprocal square root
approximation, reciprocal iteration, and reciprocal square root
iteration. Refer to discussion of floating-point arithmetic for a
description of the instructions that use this unit.

The unit is reserved for the time of a vector stream during execution of
vector addition instructions. The unit can accept vector operand data
each clock period, and after a transit time delay, can deliver a result
each clock period. The unit can accept scalar references as fast as they
issue if the unit is not processing vector data.

2.4.10 LOCAL MEMORY

Each Background Processor contains 16,384 64-bit words of Local Memory.
This memory holds scalar operands during a computation period. The Local
Memory can also be used for temporary storage of vector elements when
these elements are used more than once in a computation in the V
registers. Instructions that use Local Memory are:

HR-2000 2-10




. 044 and 046 read from Local Memory to A register
. 045 and 047 write to Local Memory from A register
. 054 and 056 read from Local Memory to S register
. 055 and 057 write to Local Memory from S register
. 074 read from Local Memory to V register

. 075 write to Local Memory from V register

2.5 ARITHMETIC OPERATIONS

Functional units in the Background Processor perform either twos
complement integer arithmetic or floating-point arithmetic.

2.5.1 INTEGER ARITHMETIC

All integer arithmetic, whether 32 bits or 64 bits, is twos complement.
The Address Add and Address Multiply units perform 32-bit arithmetic.
The Scalar Integer unit performs scalar 64-bit arithmetic and the Vector
Integer unit performs vector 64-bit arithmetic.

Integer representations of the integers 0, +1, and -1 in 32-bit and
64-bit format are illustrated using octal notation.

Integer 32-bit Format 64-bit Format
0 00000000000 0000000000000000000000
+1 00000000001 0000000000000000000001
-1 377777777717 1777777777777 77777T7777

Multiplication of two scalar integer operands is accomplished by using
the floating-point multiply instruction. Division is done by algorithm;
the particular algorithm used depends on the number of bits in the
quotient.

2.5.2 FLOATING-POINT ARITHMETIC

Floating-point numbers are represented in a standard format throughout
the Background Processor. This format is a packed representation of a
binary coefficient and an exponent. The coefficient is a 48-bit signed
fraction. The sign of the coefficient is separated from the rest of the
coefficient as shown in figure 2-2. Since the coefficient is signed
magnitude, it is not complemented for negative values.

HR-2000 2-11



Binary point

263 562 243l247 20

Sign Exponent Coefficient

Figure 2-2. Floating-point Data Format

The exponent portion of the floating-point format is represented as a
biased integer in bits 262 through 248, The bias that is added to
the exponents is 40000g. The positive range of exponents is 40000g
through 57777g. The negative range of exponents is 37777g through
20000g. Thus, the unbiased range of exponents is the following (note
the negative range is one larger):

2-200008 through 2+17777g
In terms of decimal values, the floating-point format of the Background
Processor allows the accurate expression of numbers to about 15 decimal
digits in the approximate decimal range of 10-2466 through 10+2466,
A floating-point representation of the integers 0, +1, and -1 in
normalized form is illustrated using octal notation for each of the three

fields.

Integer Floating-point representation

0 0 00000 0000000000000000

+1 0 40001 4000000000000000

-1 1 40001 4000000000000000
Normalizing

A nonzero flcating-point number is normalized if the most significant bit
of the coefficient is nonzero. This condition implies the coefficient
has been shifted as far left as possible and the exponent adjusted
accordingly. Therefore, the floating-point number has no leading zeros
in the coefficient. The exception is that a normalized floating-point
zero is all zeros.

When a floating-point number is created by inserting an exponent of
40060g into a 48-bit integer word, the result should be normalized
before being used in a floating-point operation. Normalization can be
accomplished by adding the unnormalized floating-point operand to 0 (see
integer to floating-point conversion in this section).

HR-2000 2-12




Range errors

Exponent values of 60000g and greater are considered to have overflowed
the exponent range. Hardware tests are performed for these values to
indicate floating-point range error. Exponent values less than 20000g
are considered to have underflowed the floating-point range. Such values
are treated as if they had a zero value. The hardware does not indicate
when a computation underflows the floating-point range.

Whether or not range errors are enabled, when an overflow condition is
detected by the hardware the result exponent is forced to an overflow
value. Each floating-point operation forces a signature exponent as
follows:

Floating-point add/subtract 60000g
Floating-point multiply 60001g
Floating-point reciprocal approximation 60002g
Floating-point square root approximation 60004

Floating-point addition

The Floating-point Add unit forms the sum of two operands in
floating-point format and delivers a result in floating-point format.
The result is always normalized regardless of source operand status.
Instructions 120, 170, and 171 use the Floating-point Add sequence.

In the process of adding two floating-point operands, one operand
coefficient is shifted right for exponent matching. The coefficient from
this shifting operation is rounded up.

A special test is made for all 0 bits in the result coefficient. When
this occurs the exponent field in the result is also cleared. A word of
all zeros is delivered to the destination register.

A special test is made for one or both operands with an overflow
exponent. An error signal is sent to the Background Port Status register
(refer to section 5) if range errors are enabled, and an overflow
exponent (60000g) is forced in the result delivered to the destination
register.

Floating-point subtraction

The Floating-point Add unit forms the difference of two operands in
floating-point format and delivers a result in floating-point format.
Instructions 121, 172, and 173 use the floating-point subtraction.
sequence.

HR-2000 2-13



Floating-point to integer conversion

The Floating-point Add unit forms an integer representation of a
floating-point operand. This process is accomplished by adding the
operand to a constant integer. Instructions 122 and 174 use this form of
the floating-point add sequence.

The maximum size of the resulting integer value is 48 bits. A positive
or negative result is sign extended to form a 64-bit integer result.

An operand with a floating-point value greater than a 48-bit integer is
an error condition. An error signal is sent to the Background Port
Status register if floating-point range errors are enabled, and a zero
result is delivered to the destination register.

Integer to floating-point conversion

The Floating-point Add unit forms a floating-point representation of an
integer operand. This process is accomplished by adding the operand to a
constant and using the floating-point normalize hardware to form the
proper floating-point result. Instructions 123 and 175 use this form of
the floating-point add sequence.

The maximum allowable size of the integer operand is 48 bits; if greater,

no error is flagged. The bits above 48 bits are discarded during the
operation.

Floating-point product

The Floating-point Multiply unit forms the product of two operands in
floating-point format and delivers a result in floating-point format. If
both operands are normalized, the result is also normalized.

Instructions 124, 154, and 155 use this sequence.

The 48-by-48 matrix of logical product bits is truncated 8 bit positions
below the low-order result coefficient bit (see figure 2-3). Round bits
are added to this lower field to give an equal population of high and low
round errors for random operands. A round bias exists over narrow ranges
of operands because of the 1-bit correction shift after the round
operation.

The following special cases are treated in floating-point multiplication
for operands out of range.

1. One or both operands have overflow exponent.
2. Sum of operand exponents is an overflow.

3. Sum of exponents is an underflow.

4. Both exponents are all zeros.

HR-2000 2-14




bits

A

48 bits »le 48 bits

_—_—-‘—_——_N—_-—-—-‘———-———-‘————-————_—-—-

For instructions 124, 132, 133, 154, 166, and 167, bits 249 tnrough
2-56 are used for rounding. Bits 250 and 2-51 are the round bits
and bits 2-93 through 2-56 compensate for truncation.

2-1 through 2-48 2-49 2-50 2-51 2-52 2-53 ,-54 2-55 5-56

Figure 2-3. 48-by-48 Bit Matrix Used for Floating-point Product

HR-2000 2-15



Cases 1 and 2 cause a Floating-point Error signal to be sent to the
Background Port Status register if the floating-point range errors are
enabled. The result delivered to the Destination register is forced to
an overflow exponent value (60001g). Case 3 results in an all-zero

word sent to the Destination register. Case 4 computes the coefficients
with no normalize correction. The resulting exponent for this case is 0O,
which aids multiple-precision and integer calculations.

Reciprocal approximation

The Floating-point Multiply unit forms an approximation to the reciprocal
of a floating-point operand value, Instructions 132 and 166 use this
sequence.

The values from the table are used in a linear interpolation
computation. The form of this computation is illustrated in the
following example.

Example:
In this example, A is a reciprocal approximation for the high-order 12
bits of operand coefficient; B is the operand coefficient; and R is the
better reciprocal approximation.
Then the iteration step for interpolation is:

R = 2A - A*A%*B
The two approximations read from the table are 2A and -A*A. The normal
multiply mechanism is then used to form the product with the additional
term included in the summing process.

Two special cases occur in the reciprocal approximation sequence.

. Operand exponent has overflow value.
. Operand exponent has underflow value.

Both cases cause an error signal to be sent to the Background Port Status
register if the floating-point range error is enabled and cause the
computational result exponent to be forced to an overflow value

(60002g).

HR-2000 2-16




Reciprocal iteration

dkdkkkhkkkhkhhkhihkdkhhhhihkhkhhhhkhhhhhkhhhhhhkhdhkhhhikkhkhkkik

CAUTION

The reciprocal iteration instructions (126 and 156)
should be used only with the reciprocal approximation
instructions (132 and 166) and should only be used for
one additional iteration. Operands not generated by
the reciprocal approximation instructions may not
deliver the expected result.

Akkkkkhkhkkhhhkhhkhkhhhkhhhhhhhihkhhhhkhhhkhiokhkhdddhhddhhikkiikk

The Floating-point Multiply unit forms a floating-point number that is
used in a second iteration for the reciprocal of a full-precision
operand. The first iteration is formed in the reciprocal approximation
described above. The second iteration uses the same process to form a
reciprocal approximation with 46 bits of coefficient accuracy.
Instructions 126 and 156 use this sequence (see figure 2-4).

The division algorithm that computes S1/S2 to full precision requires
four operations.

1. 83 = 1/82 Half-precision reciprocal

2. 854 = 2 - 82 * 83 Correction factor

3. 85 = 83 * 54 Reciprocal = Half-precision reciprocal *
correction factor

4, 86 = 81 * S5 Quotient = numerator * reciprocal

Reciprocal square root approximation

The Floating-point Multiply unit forms an approximation to the reciprocal
square root of a floating-point operand value. Instructions 133 and 167
use this sequence.

The values from the table are used in a linear interpolation

computation. The form of this computation is illustrated in the
following example.

HR-2000 2-17



I
I
|
I
I
I
[
I
l
|
i
l
|
|
|
l
l
l
l

2-1

_Y

|
|
I
|
!
[ 48 bits s 48 bits
|

For instructions 126 and 156, bits 2-49 through 2-56 are used for
rounding. Bits 250 and 2-5! are the round bits and bits 2-9°3
through 2-56 compensate for truncation.

2-1 through 2-48 2-49 ,-50 ,-51 ,-52 5,-53 ,-54 ,-55 ,-56

Figure 2-4. 48-by-48 Bit Matrix Used for Reciprocal Iteration

HR-2000 2-18




' Example:

In this example, A is a reciprocal square root approximation for the
operand coefficient, B is the operand coefficient, and R is the better
reciprocal square root approximation.

The iteration step for interpolation is:

R = (3A/2) - (A%A*A%B/2)
The two approximations read from the table are 3A/2 and -A*A*A/2. The
normal multiply mechanism is then used to form the product with the

additional term included in the summing process.

Three special cases occur in the reciprocal square root approximation
sequence.

1. Operand exponent has overflow value.
2. Operand exponent has value of 0 through 3.
3. Operand is a negative value.

Cases 1 and 3 cause an error signal to be sent to the Background Port

Status register. All three cases cause the computational result exponent
to be forced to an overflow value (60004g).

Reciprocal square root iteration

dekkkhkhhhkhkhkhkhkkkhkhkhkhhhihhhkhkhkhhkhkhkhhhkhkhhhihhkhhkhkhkkkhkkkkk

CAUTION

The square root iteration instructions (127 and 157)
should be used only with the reciprocal square root
approximation instructions (133 and 167) and should
only be used for one additional iteration. Operands
not generated by the reciprocal square root
approximation instructions may not deliver the expected
result.

e e e e e e e e e g e e e e e e e e e e ke e e ke de e e e ke ok K g g de ok de ek e de de o do ok do e kode de ke ke ke ke

The Floating-point Multiply unit ferms a floating-point number which is
used in a second iteration for the reciprocal square root of an operand.
The first iteration is formed in the reciprocal square root approximation
described above. The second iteration uses the same process to form a
reciprocal square root with 46 bits of coefficient accuracy.

Instructions 127 and 157 use this sequence (see figure 2-5).

HR-2000 2-19



< 48 bits >l 48 bits

-y

For instructions 127 and 157, bits 2-49 through 256 are used for
rounding. Bits 2-50 and 2-5! are the round bits and bits 2-53
through 2-56 compensate for truncation.

2-1 through 2-48 2-49 ,-50 ,-51 5-52 5-53 ,-54 ,-55 ,-56

Figure 2-5. 48-by-48 Bit Matrix Used for Square Root Iteration

HR-2000 2-20




The square root algorithm that computes the square root of S1 requires
four operations.

1.

HR-2000

S2

S3

S4

S5

1

1/ S1

S1 * 52
(3 - 82 * 83)/2

S3 * 54

Half-precision reciprocal square root
approximation

Half-precision square root
Correction factor

Square root = half-precision square
root * correction factor






3. BACKGROUND PROCESSOR SYMBOLIC MACHINE INSTRUCTIONS

This section contains detailed information about individual instructions
or groups of related instructions. Each instruction begins with boxed
information consisting of the CRAY-2 Assembly Language (CAL) Version 2
syntax format, an operand (if required), a brief description of each
instruction, and the machine instruction (octal code sequence defined by
the £ field).

Following the hoxed information is a more detailed decscription of the
instruction and an example using the instruction.

3.1 SYMBOLIC INSTRUCTION FORMAT

The following special characters can appear in the operand field of
symbolic machine instructions and are used by the assembler in
determining the operation to be performed.

+ Integer sum of adjoining registers

+F, +f Floating-point sum of adjoining registers

- Integer difference of adjoining registers
-F,-£f Floating-point difference of adjoining registers
* Integer product of adjoining registers

*F ,*f Floating-point product of adjoining registers
*1, %1 Reciprocal iteration of adjoining registers
*Q, *q Floating-point square root approximation

*Q, *q Square root iteration of adjoining registers
/H,/h Floating-point reciprocal approximation

# Use ones complement

> Shift value or form mask from left to right
< Shift value or form mask from right to left
& Logical product of adjoining registers

! Logical sum of adjoining registers

A\ Logical difference of adjoining registers
CI,ci Compressed iota

F,f Full load (64-bits)

FIX,fix Convert from floating-point to integer

FLT, flt Convert from integer to floating-point

H,h Half load (32-bits)

L,1 Left load (32-bits)

M,m Negative

N,n Nonzero

HR-2000 3-1



P Parcel load (16-bits)
P Population count

P Positive
q

s

-]

b4

Parity count

Short load (6-bits)
Leading-zero count
Zero

3.2 MACHINE INSTRUCTION FORMAT

The Background Processors tramslate instructions in 16-bit parcels of
data. These parcels are packed four-per-word in the Common Memory. The
parcels are addressed as if the Common Memory had four times as many
locations and the data were 16 bits long.

Figure 3-1 illustrates the format of a 16-bit instruction parcel.

Figure 3-1. Instruction Parcel Format

o

As shown in figure 3-1, the f designator is the operation code. The L
i, j, and k designators generally refer to V, S, or A registers in

a three-address format. Uppercase or lowercase designators for the

registers are allowed in CAL; both will be used in the symbolic

instruction descriptions. The mnemonics may be entered in all uppercase

or all lowercase. The I designator generally specifies the Destination

register for the functional computation. The j and k designators

generally specify the source operands.

Some instructions include additional parcels of constant data. There can
be the following parcels of constant data depending on the specific
instruction:

. 1 (mg)
. 2 (mj and mp)
. 4 (my, mp, my, and my)

Single parcel constants are generally used to address the Local Memory.
Two parcel constants are generally used to address Common Memory. Four
parcel constants are used to enter 64-bit values in the S registers.

When instructions read constants from the following parcels in the
instruction stream, the Program address is advanced over these data
parcels to point to the next instruction. The high-order data parcel is
read first for those cases of multiparcel data.

HR-2000 3-2



3.3 INSTRUCTION DESCRIPTIONS

The instruction descriptions begin with the octal code for the high-order
7 bits of the parcel (f designator). The three octal register
designators (i, j, and k) then follow. An X appears in the

description where a register's designator is ignored. CAL will insert a
zero for every X.

N

HR-2000 3-3



INSTRUCTIONS 000 - 001

[ ] ] I ]
| Result | Operand ' Description l Machine |
| l | | Instruction |
! ] | | 1
| | I _ l I
| erf | I Error ex1? | 000x00 i
exit | | Normal exit l 000x01 |
' exit exp Normal exit 000xjk
| l | Executes as 000xjk | 001xjk |
I | | I ]

Instructions 000 and 001 stop the current program sequence, place the
Background Processor in idle mode, and set the Exit Mode and Idle Mode
flags in the Background Port Status register. The 6-bit jk value is
entered into the Background Port Status register.

Examples

fCode generated ILocatioanesult lOperand lComment
11 10 120 135

) | ! i 1

| 000000 I lerr | |

[ |

| 000001 ! |exit ! !

HR-2000 3-4




)

INSTRUCTION 002

|

3 I ag
I
I

vin ay erased

[ I I | |
| Result | Operand I Description . I Machine
| I I Instruction '
] ] | §
I I 1 l 1
| r,aj ag | Register jump to (ag) with | 002ixk ]
i return address to aj ’ l
| Register jump to (ag), value 002kxk
| t i |
I | I |

Instruction 002 stops the current program sequence and begins a new
sequence at a computed parcel address read from the Ap register. The
parcel address for the next instruction in the current program segquence

is entered into the A; register.
Example:
rCode generated ILocation|Result IOperand [Comment
| L1 110 ;20 135
1

I
| 002ixk

I
| 002kxk

HR-2000

| | |
I | I
! | |
| |

t
i
l
1



INSTRUCTION 003

| I I I i
| Result [ Operand | Description | Machine ‘
| | l | Instruction |
] | | ] ]
I | I I I
l . l l s . l l
J 1
| lexp lUncondlt onal jump 1003xxx my my |
] L | [ ]

Instruction 003 stops the current program sequence and begins a new
sequence at a specified constant parcel address read from the next
2 parcels in the instruction queue.

Example:
| code generated lLocationIResult ]Operand TComment
L 1 110 120 {35
1 .
| | l | I
I

003xxx I

HR-2000 3-6



Y

INSTRUCTIONS 004 - 005

ISemaphore set; set Semaphore.

l

| Result | Operand | Description [ Machine

| | | | Instruction

| ] | | i

L] ¥ 1 T 1

| jes 'exp IJump to constant parcel if | 004xxx my m I

| | | I 172

Semaphore clear; set Semaphore.
g |

: jss :exp Jump to constant parcel if l 005xxx my mp l
I

l l I l

Instructions 004 and 005 conditionally stop the current instruction
sequence and begin a new sequence at a specified constant parcel address
read from the next 2 parcels in the instruction queue.

The branch is conditional on the state of the Semaphore flag assigned to
this Background Processor. The Background Port Status register points to
the Semaphore flag. The Semaphore flag is set for either instruction if
it was not previously set. The Semaphore flag bit in the Background Port
Status register is set if either instruction alters the state of the flag
from 0 to 1.

Example:
[ code generated lLocationIResult |Operand ]Comment
1 L1 10 120 135
T l I L]
I004xxx | ' | !
|
I | | |
| 005xxx ] | | |

HR-2000 3-7



INSTRUCTION 006

I I I I !
| Result | Operand | Description | Machine |
| , | | Instruction |
i | L { ]
] T T 1 1
| ssm : ISet Semaphore : 006XXX }
| I |

Instruction 006 sets the Semaphore flag assigned to this Background
Processor without regard to its previous state. The Semaphore flag bit in
the Background Port Status register is set if the previous state of the
Semaphore flag was a 0. The operating system program uses this
instruction to restore Semaphore flag values at the time of job restart.

Example:

| Code generated ILocationIResult IOperand IComment
I :1 110 !20 I35

| | | I |

I

006xxx I

| I | I

HR-2000 3-8




INSTRUCTION 007

| I l l l
] Result | Operand | Description | Machine I
| | | | Instruction |
| ] . ! ]
T 1 H T ]
l csm : :Clear Semaphore : 007xxx '
I |

Instruction 007 clears the Semaphore flag assigned to this Background
Processor without regard to its previous value. When this instruction
executes, the semaphore bit in the Background Port Status register is
cleared. A Background Processor program may use this instruction to
release access to a privileged area of Common Memory for other processors
assigned to this job.

This instruction issues without delay. Execution of the function,
however, may be delayed by activity in the Common Memory port. The
following instruction does not issue until the Common Memory quadrant
buffers are clear. The delay ensures that any Common Memory write
operations have been completed before another processor is allowed access
to the privileged area.

Example:

!Code generated |Locatioanesu1t ]Operand |Comment
| :l !1Q !20 135
|007xxx | | l '

!

| l | |

HR-2000 3-9



INSTRUCTIONS 010 - 013

1 l | 1 |

jm 'ak,exp | Branch if (ag) is negative | 013xxk m; my '

Instructions 010 through 013 conditionally stop the current instruction
sequence and begin a new sequence at a specified constant parcel address
read from the next 2 parcels in the instruction queue.

!
l Result Operand Description Machine

l I Instruction I
L | | | |
I 1 T U 1
| jz Iak,exp lBranch if (ag) is zero ! 010xxk my; my !
| jn | ak-exp Branch if (ay) is nonzero | 01l1xxk my my |
I ip ay.,exp Branch if (ag) is positive 012xxk m; m
l

The content of the Ay register determines the condition of the
branch. The current program sequence is continued if the branch criterion
is not met.

Example:

ICode generated lLocationIResult IOperand IComment
\ 1 1 10 . 20 » .35
f 1 1

{
010xxk | I |
|

1

|

I | l [
| | I l

I

|

IOllxxk

| 012xxk | |
| 013xxk | |
! | | I |

HR-2000 3-10




e

INSTRUCTIONS 014 - 017

—

[ | |
| Result | Operand | Description | Machine |
| | [ | Instruction |
= i i ? =
l jz |s-,exp lBranch if (s4) is zero l 0l4xjx my m ‘
‘ j J l i

jn S j,€Xp Branch if (Sj) is nonzero 015xjx my mp
| jp lSj,exp |Branch if (Sj) is positive ‘ 016xjx my mzl
: jm =Sj,exp :Branch if (Sj) is negative { 017xjx my mf~}

Instructions 014 through 017 con
sequence and begin a new se
read from the next 2 parcel

The content of the Sj regi
The current program sequence is

as indicated above.
branch criterion is not met.

Example:

quence at a specified constant p
s in the instruction queue.

ster determines the condition of the branch
continued if the

ditionally stop the current instruction
arcel address

|Location Result

Operand

Comment

Tcode generated
—

10

20

35

=

| 014xjx

HR-2000

I |
I I
l |
I |
l |
| |
l I
I |



INSTRUCTIONS 020 - 021

! I I I 1
I Result | Operand | Description | Machine I
I | | I Instruction I
{ 1 i 1. I
i ¥ 1 ) 1
{ aj }aj+ak {Integer sum of (aj) and (ag) } 020ijk :
to aj
| aj Iaj—ak IInteger difference of (aj) and I 021ijk I
| I | (ag) to aj I I
I I I I

Instructions 020 and 021 perform 32-bit integer arithmetic in the A
registers. The operands are obtained from registers Aj and Ay,
and the result is delivered to register Aj.

Instruction 020 forms the 32-bit integer sum,

Instruction 021 forms the 32-bit integer difference.

Example:

ICode generated Location|Result IOperand Comment
! 1 10 120 ~ 35

! [ ! I I

| 020ijk I I I I

I I I I |

| 021ijk ] | | |

HR-2000 3-12



INSTRUCTIONS 022 - 023

I I I

| Result | Operand | Description | Machine :
' I ' | Instruction I
i 1 I i i
{ I I I |
l aj |a-*ak 'Integer product of (aj) and l 022ijk l

J J

| l (ag) to aj I I
I I |Executes the same as 022ijk | 023ijk |
| I | I |

Instruction 022 forms the integer product of two 32-bit integer operands.
The operands are obtained from the Aj and Ay registers. The
low-order 32-bits of the result data are delivered to the A; register.

Example:
rCode generated |Locatioanesult IOperand ]Comment
| {1 110 120 135
¥ T T M ¥
| | | I I

022ijk
| J I I | I
L o2315% ' ' | |

I I I I

HR-2000 3-13



INSTRUCTION 024

I I | I
| Result I operand ! Description ! Machine
P P l
| I ' Instruction l
, I I l
| | [ |
| aj :Sj |copy (sj) to aj { 024ijx |
|

Instruction 024 reads a 64-bit word from the Sj register and enters
the low-order 32 bits into the A; register.

Example:
| Code generated Locatioanesult IOperand IComment
1 10 [20 135
I l |
| 024ijx |

HR-2000 3-14



INSTRUCTION 025

[ | | l

' Result l Operand Description l Machine

| ' Instruction
. l I l

| I ! [

| aj {vl }Copy (vl) to aj | 025ixx

I I

I T Sy ——————

Instruction 025 forms a 32-bit word from the data in the VL register.
The low-order 6 bits are copied from the VL data. The high-order 24 bits
are 0. The result data is delivered to the A; register.

Example:

| Code generated Location]|Result lOperand Comment
1 10 [20 35

l | I | l

|025ixx | | | |

:\\u/ B

HR-2000 3-15



INSTRUCTIONS 026 - 027

I

r I | I '
| Result : Operand i Description i Machine {
] Instruction

I | I | |
| I l I I
| aj | exp |Load aj with a value | 0261jk I
| aj | €Xp.s Load aj w%th a 6—b%t valge. | 026%jk |
| aj Iexp,s,p Load a; with a 6-bit positive ' 026ijk I
I I lvalue i l o l

aj exp Load a; with a value 027ijk

' aj lexp,s |Load aj with a 6-bit value l 027ijk I
| aj 'exp,s,m Load a; with a 6-bit negative I 027ijk |
| l |value ] I
I I |

Instructions 026 and 027 form a 32-bit word from the jk data in the

instruction parcel. The low-order 6 bits are copied from the instruction

parcel. For instruction 026, the high-order 26 bits are zeros. For

instruction 027, the high-order 26 bits are ones,

delivered to the Aj register.

The result data is

The Aj exp instruction will map into either an 026, 027, 040, 041,

or an 042 opcode. If all symbols within the expression have been
previously defined within the currently enabled qualifier then CAL will
map this instruction into the proper opcode with the fewest number of
parcels into which the expression will fit,
will be mapped into the 042 opcode.

Otherwise,

this instruction

CAL will map the A; exp,S instruction into the 027 opcode if the
expression is negative and has a relative attribute of absolute.
Otherwise, this instruction will be mapped into the 026 opcode.

Instruction 026 loads the A; register with positive jk.

Instruction 027 loads the A; register with negative jk.

Example:

Code generated

ILocationIResult

Operand

lComment

11

110

20

135

| 027ijk
| 027ijk
| 027ijk

HR-2000

I
I
I
|
I
I
|

[
I
I
I
I
I
I



INSTRUCTIONS 030 - 033

l I | I I
| Result | Operand | Description | Machine |
| | | | Instruction |
| l 1 ] |
¥ 1 T i !
I vm Ivk,z ISet vm from zero elements | 030xxk :
] | of (vg) |
I vm Ivk,n Set vim from nonzero elements l 031xxk ‘
| lof (vg) | |
| vm |vg.p |Set vm from positive elements | 032xxk |
| ! lof (vg) 1 !
vm |V m Set vm from negative elements | 033xxk |
| | |of (Vi) | |
l ] L ]

Instructions 030 through 033 create a vector mask in the VM register
based on the results of testing the contents of the elements of register
Vg. The VM register is initially cleared, and a bit is entered in

the VM register where elements of the vector stream meet the test
criterion. The high-order bit position in the VM register corresponds to
the first element of the vector. The bit positions are then assigned in
order for the remainder of the vector stream.

These instructions are performed in the vector logical unit,

Example:

I Code generated |Location|Resu1t lOperand [Comment
I [1 110 |20 {35

030xxk

031xxk

033xxk

I l |
l l I
I [ !
032xxk | | |
l } |
! . |

HR-2000 3-17



INSTRUCTION 034

| I l I

l Result | Operand | Description | Machine

| | I | Instruction
] ] ] ]

¥ i) 1 T

| | | | :

| vm ISj | Copy (Sj) to vm | 034xjx

i 1 . l '

Instruction 034 enters the VM register with a 64-bit word from the Sj
register.

Example:

lCode generated lLocatioanesult ]Operand [Comment
| 11 110 | 20 135

I t 1 ¥

!034x'x l | | !

| 05K : t l |

| | l

HR-2000 3-18



INSTRUCTION 035

I I I I l
| Result | Operand | Description | Machine |
| i | | Instruction |
[ ] ] ] ]
I T L) 1 ]
| dri l IDisable halt on memory field I 035xx0 !
| I lrange error ! '
l eri ’ |Enab1e halt on memory field l 035xx1 l
J ! Irange error | |
! afi I Ipisable halt on floating-point | 035xx2 |
| | |error | |
| efi | |Enable halt on floating-point | 035xx3 ]
| | jerror ' I
I 1 I 1 |

Instruction 035 alters 2 status bits (bits 21 and 22) in the Background
Port Status register depending on the value of the k designator in the
instruction parcel.

Example:

Code generated LocationIResult IOperand IComment

1 110 120 : 135

i
. :035xx0
035xx1
IO35xx2
| 035xx3
|

[

|

| l l l
l l | I
| | l |
l | I |
| 1 | l

HR-2000 3-19



INSTRUCTIONS 036 - 037

I I | I |

Result Operand Description Machine |

I

] | | | Instruction |
1 } i { }
] 1 T t ]
: vl |ak !Copy (ag) to vl : 036xxk }
l : !Executes the same as 036xxk ' 037xxk I

Instruction 036 enters the low-order 6 bits of data from the Ag
register into the VL register.

Example:
fCode generated ILocationIResult IOperand IComment
l |1 110 120 135
I 1 :
| | I I I
036xxk
I I I | |
| 037xxk | I I I
I | | |
| i t t

HR-2000 3-20



INSTRUCTIONS 040 - 041

I Inegative value

I I I I |
| Result | Operand | Description | Machine |
| | | | Instruction I
| | | | |
| aj :exp :Load aj with a value | 0401ixx mj {
I aj €xXp,p Load a; with a 16-bit value I 0401ixx mj
I aj Iexp,p,p ILoad aj with a 16-bit | 040ixx mj I
I I positive value | |
] aj |exp Load a; with a value | 04lixx mg |
aj exp, Load aj with a 16-bit value | 041ixx m

i p-p i 5 1
| aj |exp,p,m |Load aj with a 16-bit | 041ixx my |
I I I
| l J

Instructions 040 and 041 enter a 32-bit constant into the A; register.
The low-order 16 bits are read from the following parcel in the
instruction queue.

The A; exp instruction will map into either an 026, 027, 040, 041,

or an 042 opcode. If all symbols within the expression have been
previously defined within the currently enabled qualifier, CAL will map
this instruction into the proper opcode with the fewest number of parcels
into which the expression will fit. Otherwise, this instruction will be
mapped into the 042 opcode.

J

CAL will map the A; exp,P instruction into the 041 opcode if the
expression is negative and has a relative attribute of absolute.
Otherwise, this instruction will be mapped into the 040 opcode.

For instruction 040, the high-order 16 bits are zero-filled.

For instruction 041, the high-order 16 bits are set to ones.

Example:

ICode generated ILocationIResult IOperand IComment

L1 110 120 135
i L

0401IXx |
0401ixx
:O40ixx

|
|

| 0a1ixx
| 041ixx
|O41ixx

I
o | |
| | I I
| | I I
| | | I
| | I I
| | I I

HR-2000 3-21



INSTRUCTIONS 042 - 043

Executes the same as 042ixx 043ixx m; mpy

I I I I I
Result Operand Description Machine
I
| I Instruction
I I I
. | | | :
I
I aj lexp Load a; with a value | 042ixx mj m |
| g I ! : | gazixk m mo |
aj exp.,h Load aj with a 32-bit value 042ixx my m
1 %2
| ' | | . l l
I | [ |

Instruction 042 loads the A; register with a 32-bit constant read from
the next 2 parcels in the instruction queue.

The A; eXp instruction will map into either an 026, 027, 040, 041, or

042 opcode. If all symbols within the expression have been previously
defined within the currently enabled qualifier, CAL will map this
instruction into the proper opcode with the fewest number of parcels into
which the expression will fit. Otherwise, this instruction will be
mapped into the 042 opcode.

Example:

Code generated Location|Result Operand . Comment
I ] I I I
| [1 |10 20 135

I

| 0a2ixx : | | |

042ixx I : | :
| 043ixx I | | |

| | | |

HR-2000 3-22




.

INSTRUCTION 044

.

in Local Memory to aj

l l | |

| Result | Operand l Description ] Machine

| ] | | Instruction
| | | |

: aj ![exp] iRead from location exp : 044ixx my

Instruction 044 enters the Aj register with the low-order 32 bits of a
data word in Local Memory. The Local Memory address is obtained from the
following parcel in the instruction queue.

If the expression has a relative attribute of relocatable, it must be
relative to a Local Memory section.

Example:

[Code generated |Location|Result IOperand IComment
I . !1 110 120 !35
|044ixx I | l |

| | l | ]

HR-2000 3-23



INSTRUCTION 045

in Local Memory

l I | I I
| Result | Operand | Description ‘ Machine |
| | | ' Instruction l
| ] | i
- i i | i
Iak IWrite (ag) to location exp ; 045xxk my l

[

I l ! 1

: [exp]
l

Instruction 045 writes one 64-bit word in Local Memory. The Local Memory
address is obtained from the following parcel in the instruction queue.
The data word is obtained by sign extending the content of the Ay
register through the high-order 32 bit positions of the 64-bit word.

If the expression has a relative attribute of relocatable, it must be
relative to a Local Memory section.

045xxk l l l . '
! | | |

Example:

|Code generated lLocationIResult lOperand [Comment
! |1 110 120 |35

| | l I |

|

|

HR-2000 3-24




INSTRUCTION 046

in Local Memory to aj

[ I l !

] Result | Operand | Description ] Machine

] | | | Instruction l
| | | | !
| | | . | e |
| aj ![ak] IRead from location ay I 0461xk |
I l | | !

Instruction 046 enters the A; register with the low-order 32 bits of a
data word in Local Memory. The Local Memory address is obtained from the
Ay register.

Example:

ICode generated |Location|Result IOperand IComment
L= !1 |10 120 135
}O461xk l l | I

| | | |

HR-2000 3-25



INSTRUCTION 047

ax in Local Memory

[ l | I I
| Result | Operand | Description ' Machine |
| | ] Instruction

| |
| i } i :
I [ag] ;aj :Write (a3) to location | 047xjk I

I I
I I I l |

Instruction 047 writes one 64-bit word in Local Memory. The Local Memory
address is obtained from the Ay register. The write data word is
obtained by sign extending the content of the Aj register through the
high-order 32 bit positions of the 64-bit word.

Example:

lCode generated lLocatioanesult lOperand lComment
] 11 110 120 135

¥ ' L *

|047x'k I | I |

| J

| | | |

HR-2000 3-26




INSTRUCTIONS 050 - 052

l I | I I
| Result | Operand | Description | Machine |
| | | | Instruction |
L ] ] ] ;
L ¥ T t
: sy :exp :Load sj with a value : 050ixx my; my ’
Sj exp.,h Load s; with a 32-bit value 050ixx my m
sj exp,h,p 'Load s; with a 32-bit 0501ixx my my |
| positive value l
[ s | exp |Load s; with a value | 051ixx my; my '
sj exp,h Load s; with a 32-bit value 051ixx m; my |
i P i . 1 m2
| s |exp,h,m |Load s; with a 32-bit I 051ixx my my |
| negative value !
‘ sj Iexp,l lLoad sj left side with a 32-bit | 052ixx my my |
value I [
l I :

The S; exp instruction will map into either a 050, 051, 052, 053, 116,

or 117 opcode. If all the symbols within the expression have been
previously defined within the currently enabled qualifier, CAL will map
this instruction into the proper opcode with the fewest number of parcels
into which the expression will fit. Otherwise, this instruction will be
mapped into the 053 opcode.

CAL will map the S; exp,H instruction into the 051 opcode if the
J expression is negative and has a relative attribute of absolute.
Otherwise, this instruction will be mapped into the 050 opcode.

Instructions 050 through 052 load a 64-bit value into the S; register.

Instruction 050 reads the low-order 32 bits from the next 2 parcels in
the instruction queue. The high-order 32 bits are zero-filled.

Instruction 051 reads the low-order 32 bits from the next 2 parcels in
the instruction queue. The high-order 32 bits are filled with omnes.

Instruction 052 reads the high-order 32 bits of a constant from the next

2 parcels in the instruction queue. The low-order 32 bits are
zero-filled.

HR-2000 3-217



Example:

Code generated lLocation|Result lOperand lComment
11 |10 {20 135

l

!

l .

' 0501xx I ’

|050ixx | |

050ixx

| | I

| 051ixx [ |

| 051ixx | |

| 051ixx | l
I |
I !

ioszixx

|
|
I
|
1
|
|
|

g’

HR-2000 : 3-28



INSTRUCTION 053

l l i I l
| Result | Operand | Description |  Machine |
| | | [ Instruction I
! : ! | |
I

S ; Iexp lLoad s; with a value | 0531ixx
| 1 | | 1 | |
| | | | odsize > 4 |

¥ exp.,t Load sj with a 64-bit value 0531ixx

i i

: i } : mjy mz m3 mng :

The Sj exXp instruction will map into either an 050, 051, 052, 053,

116, or a 117 opcode. If all the symbols within the expression have been
previously defined within the currently enabled qualifier, CAL will map
this instruction into the proper opcode with the fewest number of parcels
into which the expression will fit. Otherwise, this instruction will be
mapped into the 053 opcode.

Instruction 053 loads the S; register with a 64-bit constant read from
the following 4 parcels in the instruction queue.

Example:
|Code generated |LocationiResu1t [Operand [Comment
| |1 110 120 |35

) l l I I
10531xx

; l 1 I I
l0531xx l l l I
| | | l |

HR-2000 3-29



INSTRUCTION 054

in Local Memory

! | I |
| Result | Operand | Description | Machine |
Instruction
| | | | |
/| $ 1 i
! 1 ' 1
l I 054ixx my |
I l l
I | I

I
sj {[exp] lRead from location exp
|

Instruction 054 enters the 8; register with a 64-bit data word from the
Local Memory. The Local Memory address is obtained from the following
parcel in the instruction queue.

If the expression has a relative attribute of relocatable, it must be
relative to a Local Memory section.

Example:

|Code generated |Locatioanesult Operand [Comment
| (1 110 20 .35

{ i T | 1
1054ixx : I | |

HR-2000 3-30



INSTRUCTION 055

|exp in Local Memory

I I I I |
| Result | Operand | Description | Machine l
| | | | Instruction |
| | } ) |
F T T ¥ {
: {expl] ISj Iwrite (Sj) to location { 055xjx my

I | I |

A
Instruction 055 writes one 64-bit word into the Local Memory. The Local

Memory address is obtained from the following parcel in the instruction
queue. The 64-bit word is obtained from the Sj register.

If the expression has a relative attribute of relocatable, it must be
relative to a Local Memory section.

Example:

rbode generated [Locatioanesult lOperand IComment
1 11 110 |20 135

| I | l |

|

055x7x
* | I l ]

HR-2000 3-31



INSTRUCTION 056

in Local Memory

| I I I |
| Result | Operand | Description | Machine 1
| I | | Instruction |
| | ] ] |
| I | I I
| si | [ag] | Read from location (ag) | 056ixk ]
| I | I I
L l | | |

Instruction 056 enters the $; register with a 64-bit data word from
Local Memory. The Local Memory address is obtained from the Ay
register.

Example:

fbode generated lLocatioanesult IOperand ]Comment
| 11 |10 120 |35

I I I | I

|056ixk | | | ]

HR-2000 3-32




INSTRUCTION 057

(ag) in Local Memory

I | | l

| Result | Operand | Description | Machine

| ] | | Instruction
l | | |

! | I I

| [ag] | sj | Write (sj) to location | 057ixk

I | I I

l | l I

Instruction 057 stores one 64-bit word in Local Memory. The Local Memory
address is obtained from the Ay register. The 64-bit word is obtained
from the S; register.

Example:

lCode generated lLocation[Result [Operand lComment
| 11 110 -120 135

I | | | I

|057ixk | | | |

HR-2000 3-33



INSTRUCTION 060

(aj)+(ag) to sj

l | I l |
Result Operand | Description Machine ]
I
| | | | Instruction |
l ] ] | !
) T T T 1
: Sj :(aj,ak) ;Read from Common Memory location : 0601ijk :
! | I I

Instruction 060 reads one 64-bit word from Common Memory and enters it in
the S; register. The relative Common Memory location is determined
by adding the content of register Aj to the content of register

Ak.

Example:

|Code generated ILocationIResult IOperand ]Comment
| |1 110 120 135

: |

| oot | | |

| 06017 I | | ,

|

HR-2000 3-34

poeen



.

INSTRUCTION 061

[ l I l I
| Result | Operand | Description ] Machine |
| | [ | Instruction

| | | e |
| (aj.ag) :Si 'Write (sj) to Common Memory ! 061ijk I
l l at location (aj)+(ak) I

I I l |

Instruction 061 stores one 64-bit word into Common Memory from the Sj;
register. The relative Common Memory location is determined by adding
the content of register Aj to the content of register Ag.

Example:

lCode generated |LocationfResu1t lOperand !Comment
i !l ilO 120 135

T v T
:Oﬁlijk | [ | |

| | i I

HR-2000 3-35



INSTRUCTION 062

Ilocation (ag) to sj

Instruction 062 reads one 64-bit word from Common Memory and enters it in
the S; register. The relative Common Memory location is obtained from
the Ajp register.

[ | l I

| Result | Operand | Description | Machine

| | | | Instruction
I 1 } i

‘ i 1 T

' S :(ak) |Read from Common Memory at ; 062ixk

| | |

Example:

[Code generated lLocationIResult IOperand IComment
! :1 :10 120 !35
:Oézixk | | | l

HR-2000 3-36

S



INSTRUCTION 063

| location (ag)
]

| I l | l
| Result | Operand : Description |  Machine I
I I : | Instruction l
L ] ]

| | I ' !
l (ag) |si |Write (sj) to Common Memory at | 063ixk

| | !

| l l |

Instruction 063 writes one 64-bit word in the Common Memory. The relative
Common Memory location is obtained from the Aj register. The 64-bit
word is obtained from the S; register.

Example:

lCode generated lLocation|Result [Operand fComment
| 11 110 |20 135

F T T 1 T
:063ixk l | I |

! I l l

o '

HR-2000 3-37



INSTRUCTION 064

location (ay)+exp to sj

l | | | ‘ E
| Result i Operand | Description |  Machine ‘

| | | | Instruction

| | | '

| | | enink |

l l 0641xk my mzl

I l |

]

sj |(ak,exp) IRead from Common Memory at
|
l

Instruction 064 reads one 64-bit word from Common Memory and enters it in
the S; register. The relative Common Memory location is determined by
adding the content of register Ay to a 32-bit constant from the next 2
parcels in the instruction queue.

If the expression has a relative attribute of relocatable, it must be
relative to a Common Memory section.

Example:

ICode generated lLocatioanesult IOperand |Comment
| 11 |10 120 135

] d 1 H 1
:064ixk | l | l

l ! l | l

HR-2000 3-38



INSTRUCTION 065

Result , Operand |

Description

Machine
Instruction

(ak,exp):si

l
L
1
|
l
[

|Write (sj) to Common Memory at
| location (ayg)+exp

I
|
|
i
|
I
|

065ixk mj mpy

Instruction 065 writes one 64-bit word into Common Memory.

The relative

Common Memory location is determined by adding the content of the Ay
register to a 32-bit constant from the next 2 parcels in the instruction

queue. The 64-bit word is obtained from the S; register.

If the expression has a relative attribute of relocatable, it must be
relative to a Common Memory section.

Example:

ICode generated ILocationIResult lOperand lComment
L 11 110 120 135

I 1 1 1

:0651xk : '
[

HR-2000



INSTRUCTION 066

|location exp to sj

I l ' |

Result | Operand ! Description I Machine |

! | ! | Instruction l

| ! ‘ ’ 1

| | | | |
| 5§ :(exp) {Read from Common Memory l 0661ixx my mp

| |

I l | |

Instruction 066 reads
the Sj register. The
next 2 parcels in the

If the expression has

one 64-bit word from Common Memory and enters it in
relative memory location is obtained from the

instruction queue.

a relative attribute of relocatable,

relative to a Common Memory section.

Example:

it must be

[Code generated

Location]Result ]Operand

|Comment

1 {10 120

135

0661ixx

F

HR-2000

| | |
l I | |




INSTRUCTION 067

I
! Result l Operand I Description I Machine ! '
Instruction
| | | | |
{ i | |
} (exp) $j lwrite (s;j) to Common Memory at { 067ixx my my :
I l |

|
I
| [10cation exp
I

Instruction 067 writes one 64-bit word in the Common Memory. The relative
Common Memory location is obtained from the next 2 parcels in the
instruction queue. The data word is obtained from the S; register.

If the expression has a relative attribute of relocatable, it must be
relative to a Common Memory section.

Example:

rbode generated |Location|Result LOperand IComment
" 11 , 10 120 {35

I | i 1 1
=067ixx I : | |

3

HR-2000 3-41



INSTRUCTION 070

Result Operand I Description Machine
| Instruction
i
070ijk

location (a+) incremented
lby (ag) to vj

Instruction 070 reads a vector stream of 64-bit words from Common Memory
and enters it into the V; register. The content of the VL register
determines the length of the stream.

SRS S U | S PR U |
PRSI | S

I
|
|
I
[
|
!
|
I

|
|
I
}
!
vj }(aj,ak) IRead from Common Memory
l
I

The first address for the Common Memory reference is formed by adding the
content of the A: register to the Background Processor base address.

The following addresses for the Common Memory reference are separated by
constant increments or decrements (strides). The stride is read from
register Ay. Aj may contain positive, zero, or negative values.

Example:

!Code generated Location|Result IOperand , IComment

I 1 10 120 |35
' l | .
| 070ijk | I

I I
I I I I I

HR-2000 3-42



INSTRUCTION 071

[ [ [ !
| Result | Operand l Description l Machine |
I | | l Instruction |
' 1 i 3 I
™ 1 1 1 ]
I (aj,ak) Ivi lwrite (vj) to Common Memory I 071ijk I
I | location (aj) incremented l I
I l Iby (ag) | I
I l | |

Instruction 071 writes a vector stream of 64-bit words from the Vj
register into Common Memory. The content of the VL register determines
the length of the stream.

The first address for the Common Memory reference is formed by adding the
content of the A4 register to the Background Processor base address.

The following addresses for the Common Memory reference are separated by
constant increments. The increment is read from register Ag.

Example:

|Code generated lLocationIResult IOperand ]Comment
| 1 110 1 20 : 135

I 1 { i i

} 0711k } ' ' '

HR-2000 3-43



INSTRUCTION 072

locations (ag)+(vj)
| to vi

I | I
% Result | Operand l Description | Machine
Instruction
| ! | |
I 1 ] I
: Vi }(ak,Vj) |Gather from Common Memory : 072ijk
| I |
I | I

Instruction 072 reads a vector stream of 64-bit words from Common Memory
The content of the VL register determines the

into the V; register.
length of the stream.

The relative Common Memory location is computed separately for each
The content of the Ay register is read at the
beginning of instruction execution and held in the Common Memory port.
The content of the V5 register is then streamed to the Common Memory

element of the vector.

port. The high-order 32 bits of this data are discarded.
32 bits are used as components in the address calculation.

The first address for the Common Memory reference is formed by adding the

The low-order

first element of Vj data to Ay data and the Background Processor

base address. The following addresses for the Common Memory reference
are formed by adding the following elements of Vj data to the Ay data
and the Background Processor base address.

Example:

Code generated

|Location Result Operand

lComment

11 10 20

|35

I
| 07215k

HR-2000

e N




INSTRUCTION 073

l | | |
| Result | Operand | Description l Machine |
I I | I Instruction |
X . \ |
{ | { |
, (ak,Vj) vi lScatter (vij) to Common Memory | 073ijk l
I l

I I |

l
| [10cations (ag)+(v5)
l

l

Instruction 073 stores a vector stream of 64-bit words into Common Memory
from the V; register. The content of the VL register determines the
length of the stream.

The relative Common Memory location is computed separately for each
element of this vector stream. The content of the Ayp register is read
at the beginning of instruction execution and held in the Common Memory
port. The content of the Vj register is then streamed to the Common
Memory port. The high-order 32 bits of this data stream are discarded.
The low-order 32 bits are used as components in the address calculation.

The first address for the Common Memory reference is formed by adding the
first element of Vj data to Ax data and the Background Processor

base address. The following addresses for the Common Memory reference are
formed by adding the following elements of Vj data to the Aj data

and the Background Processor base address.

Example:

!Code generated Location{Result Operand Comment
. 1 10 20 35

[ I I [
:0731]k I | | |

| I | !

HR-2000 3-45



INSTRUCTION 074

|1ocation (ag) to vj

| I
I Result ! Operand | Description I -Machine }
Instruction
| i | | |
{ | I ] ]
: Vi }[ak] , ‘Read from Local Memory ; 074ixk E
l 1 l |

Instruction 074 reads a stream of 64-bit words from Local Memory at
consecutive locations. The initial Local Memory address is obtained from
the Ay register. The data stream is entered into the Vj

register. The content of the VL register determines the length of the
stream.

Example:
Code generated lLocation|Result IOperand Comment
[1 |10 120 35
| | 1 | I
|O741xk | l | l

HR-2000 3-46



i

INSTRUCTION 075

| 1ocation (ag)

! Result l Operand ! Description | Machine

| . | | l Instruction
| I ]

I [ag] v lWrite (vj) to Local Memory : 075ixk

I I

e AU | K S——

Instruction 075 stores a vector stream of 64-bit words into Local Memory
at consecutive locations. The initial Local Memory address is obtained

from the Ay register. The V; register contains the data stream,

and the content of the VL register determines the length of the stream.

Example:

!Code generated Location|Result [Operand Comment
1 10 120 35

| I | ! |

| 075ixk ! I | |

HR-2000 3-47



INSTRUCTIONS 076 - 077

| Result | Operand | Description | Machine
[ [ , [ Instruction
i 1 1 1
LD ] i ]
I pass ' |Pass l 076xxx
I pass lexp Pass | 076ijk
| | |Executes same as 076xxx | 077xxx
I | | ; I
Instructions 076 and 077 issue without functional activity.
Example:
Code generated Location|Result Operand Comment
1 10 20 35

f
| 076xxx
| 07617k
I

| 077xxx

HR-2000

f
|
l
|
|

— i e st



INSTRUCTIONS 100 - 103

I I | | |
' Result | Operand | Description ] Machine '
' | | | Instruction |
: | I |
I 1 T |
| s :Sj&Sk :Logical product of (sj) and | 100ijk |
i (sg) to sj l l
I sj l#sk&Sj ILogical product of (sj) and ] 101ijk 1
| | complement (sg) to sj |
| sj ISj\sk | Logical difference of (Sj) and | 102ijk !
| | (sg) to sj I
: s |sj!sk |Logical sum of (sj) and ‘ 1031ijk |
| | (sg) to sj . o |
: sj |57 E register copy (j=k) : 103ijj |
\ 1

Instructions 100 through 103 perform scalar logical operations. The
operands are obtained from registers Sj and Sy, and the result is
returned to register Sj.

Instructions 100 and 101 read two 64-bit scalar operands and form the
bit-by-bit logical product. Instruction 101 complements the §j data

before the logical product is formed.

Instruction 102 reads two 64-bit scalar operands and forms the bit-by-bit
logical difference.

Instruction 103 reads two 64-bit scalar operands and forms the bit-by-bit
logical sum.

Example:

I'code generated lLocatioanesult IOperand IComment

11 110 120 135

| 103157

HR-2000 3-49



INSTRUCTIONS 104 - 105

|to sj
|

| Result l Operand | Description [ Machine

' | | | Instruction
I | I |

| sj lSj+Sk 'Integer sum of (Sj)+(Sk) ' 104ijk

| lto sj I

| sj ISj—Sk |Integer difference of (sj)-(sg) | 105ijk

I I

L ]

TSP SSESEAGE SN URH | NS SSSUR P

Instructions 104 and 105 perform integer arithmetic.

The operands are

obtained from registers Sj and Sy, and the result is returned to

register Sj.

Instruction 104 reads two 64-bit scalar operands and forms the integer

sum.,

Instruction 105 reads two 64-bit scalar operands and forms the integer

difference.

Example:

:Code generated Locatioanesult lOperand [Comment
! 1 |10 120 135

i
| 104ijk
|
| 105ijk

HR-2000

|

| |
| | |
| | |

|
|
|
[




St

INSTRUCTIONS 106 - 107

|
Result Operand Description Machine
| I | |

l
Instruction I
| L | | |
I T T 1
I S | psj | Population count of (sj) } 1061ij0 I
to s;
I sj Iqu | Population count parity of (s5) I 106ij1 I
to s; |
| sj IZSj ILeading zero count of (Sj) I 107ijx l
to s;
l

Instruction 106ij0 reads a 64-bit operand from the Sj register and
forms a count of the number of 1 bits in the operand. This count is
delivered as a positive integer to the S; register.

Instruction 106ij1 counts the number of bits set to 1 in the §j
register. Then the low-order bit, showing the odd/even state of the
result, is transferred to the low-order bit position of the §j
register. The high-order 63 bits are cleared. The actual population
count is not transferred.

Instruction 107 reads a 64-bit operand from the Sj register and forms

a count of the number of leading zeros in the operand. The operand is
considered a field of 64 individual bits in this operation. The resulting
count can have the values 0 through 64. The result is delivered to the

S; register as a positive integer.

Example:
l Code generated ILocationIResult IOperand IComment
| 11 10 20 ,35
' I | 1
| 106150 | | |
106ij1 '
l I
| 107ijx | [ [

HR-2000 3-51



INSTRUCTIONS 110 - 111

' | I | !
! Result | Operand | Description ! Machine I
i ] i | Instruction |
| 1 i g |
= T 1 ] 1
I sj Isj<exp |Shift (sj) left exp=64-jk | 110ijk |

I !places to sj ] I N
s sj>exp Shift (s;) right exp=jk 111ijk I
I Iplaces to sj I I

l

| I

Instructioné 110 and 111 shift 64-bit values in an S register by an
amount specified by jk.

Instruction 110 reads a 64-bit operand from the S; register, shifts

the data to the left, and returns it to the S; register. The number

of bit positions in the shift count is a constant from the instruction
parcel. This constant has a value 64 minus the low-order 6 bits in the
parcel. The range of this constant is 1 through 64.

The data is shifted left in an open-ended manner. That is, zero bits are
inserted from the right as bits shift off to the left. A shift count of
64 results in a word of all zeros.

Instruction 111 reads a 64-bit operand from the §; register, shifts

the data to the right, and returns it to the $; register. The number
of bit positions in the shift count is a constant from the instruction
parcel. This constant has a value equal to the low-order 6 bits in the
parcel. The range of this constant is 0 through 63.

The data is shifted right in an open-ended manner. That is, zero bits
are inserted from the left as bits shift off to the right.

Example:
[Code generated lLocatioanesult lOperand |Comment
| l1 .10 i20 .35
! |
110ijk
| #4987 I | | |
| 11177k | I | |
I I I

I I

HR-2000 3-52




INSTRUCTIONS 112 - 113

| l | I

Result Operand l Description | Machine l
| Instruction
\ \ | ] 1
[ I ' ' I
! S lsi'sj<ak ‘Shift (sj and sj) left (ag) | 112ijk |
places to §;
' Si |8jsivak [Shift (sj and sj) right (ag) | 113ij% '

places to s;

I | l |

Instructions 112 and 113 shift 128-bit values formed from two

S registers. The data is shifted in an open-ended manner. That is, as
bits shift off one end of the register, zeros are inserted in the other
end.

Instruction 112 reads two 64-bit operands from registers S; and
S;. The data is concatenated in a 128-bit field with the low-order
bit of S; next to the high-order bit of Sj data.

Instruction 113 reads two 64-bit operands from registers §; and
S+. The data is concatenated in a 128-bit field with the low-order
bit of Sj next to the high-order bit of §; data.

The result field is taken from the 64-bit window corresponding to the
original Sj data. The shift count is read from the Ay register.

The A register content is treated as a 32-bit positive integer. Shift
counts greater than or equal to 128 result in a zero data field; a shift
count of 64 results in the Sj data; and a shift count of 0 results in
the original §; data.

Example:
!Code generated !Locatioanesult |Operand lComment
| 1 10 , 20 .35
! I I l |
112ijk
| | | | |
| 11315k | | | |

HR-2000 3-53



INSTRUCTION 114

[ ! I I |
I Result [ Operand Description | Machine [
l Instruction
|
l | | |
! sj lvm lTransmit (vm) to sj ; 114ixx '
l | |

Instruction 114 reads the 64-bit mask from the VM register and enters it
into the §; register.

|Location!Result IOperand IComment
;1 .10 ,20 .35
I

I | {

i

HR-2000 3-54



R

INSTRUCTION 115

[

I 1

: Result | Operand : Description : Machin? :
Instruction

I | I I I

[ I | | |

] sj rt =Transmit real-time count to sj I 1151ixx l

| | I

Instruction 115 reads the 64-bit real-time clock and enters the count into

the 5; register.

Example:

rtode generated ILocation Result Operand lComment
i1 10 20 135
I l

| 1151ixx | I

HR-2000 3-55

I
I



INSTRUCTIONS 116 - 117

I [negative value

The S; exp instruction will map into either a 050, 051, 052, 053,

116, or 117 opcode. If all the symbols within the expression have been
previously defined within the currently enabled qualifier, CAL will map
this instruction into the proper opcode with the fewest number of parcels
into which the expression will fit. Otherwise, this instruction will be
mapped into the 053 opcode.

I | | 1
| Result | operand | Description | Machine '
I I I | Instruction |
I | | | |
I | I I I
s ; exp Load s; with a value 116ijk
| i | i | R
[ sj exp, s |Load sj with a 6-bit value | 116ijk I
| Sj Iexp,s,p iLoad s; with a 6-bit ' 1161jk |
l,positive value |
' sj Iexp Load s; with a value ’ 117ijk
I s exp.,s lLoad sj with a 6-bit value I 117ijk |
I sj Iexp,s,m Load s; with a 6-bit positive | 117ijk l
I | I
I I I

CAL will map the S; exp,S instruction into the 117 opcode if the
expression is negative and has a relative attribute of absolute.
Otherwise, this instruction will be mapped into the 116 opcode.
Instructions 116 and 117 form a 64-bit word from the jk data in the
instruction parcel. The low-order 6 bits are copied from the instruction
parcel. The result is delivered to the $; register.

For instruction 116, the high-order bits are zeros.

For instruction 117, the high-order bits are ones.

Example:

Code generated ILocationIResult Operand Comment

11 110 20 35
]

I
1
]
1
!

1

| 11617k I l
1165k I I
f116ijk | |
I
| 11715k ! :

117ijk ‘ |
| 11747k I |

—— — i s it i, s, o

HR-2000 3-56




INSTRUCTIONS 120 - 121

Result Operand Description Machine
| ' Instruction
| ]
1 1

(sj) and (sg) to sj
sj-fsg Floating-point difference of 121ijk

|
Sj : l
(s5) and (sg) to sj |

l
]
sj |Sj+fsk IFloating—point sum of I 120ijk
I
!
I

I

Instructions 120 and 121 perform floating-point arithmetic operations.

Instruction 120 forms the 64-bit floating-point sum of two 64-bit
floating-point operands read from registers Sj and Si. The result is
delivered to the S; register.

Instruction 121 forms the 64-bit floating-point difference of two 64-bit
floating-point operands. The minuend is read from the Sj register

and the subtrahend from the Si register. The result is delivered to

the S; register.

Special case treatment of instructions 120 and 121 is described under
Floating-point Add unit in the Background Processor section of this

PR manual.
J

Example:
ICode generated ILocatioanesult [Operand IComment
; 11 110 120 |35
‘ T L) T T
: 120ijk l 5 l |
[ .. l | | |
|1211]k | |

HR-2000 3-57



INSTRUCTIONS 122 - 123

Ifloating—point and enter into sj

I [ I I I
| Result | Operand | Description | Machine |
| | | | Instruction |
i ] 1 | |
r 1 1 ¥ i
| Sj Ifix,sk :Convert (sg) from floating-point t 122ixk |
| l to integer and enter into sj l I
| 55 Iflt,sk IConvert (sg) from integer to } 123ixk I
I I I
I | I I

Instructions 122 and 123 perform conversions between floating-point and
integer (fixed-point) formats.

Instruction 122 reads a floating-point operand from the Sy register

and delivers an integer result to the S; register. The conversion

from floating-point to integer is accomplished by adding the operand to a
constant in the Floating-point Add unit. The result is then sign extended
to form a 64-bit integer.

Instruction 123 reads an integer operand from the Sj register and
delivers a floating-point result to the §; register. The conversion

from integer to floating-point is accomplished by adding the operand to a
constant in the Floating-point Add unit. :

Special case treatment of instructions 122 and 123 is described under
Floating-point Add unit in the Background Processor section of this manual.

Example:
Code generated [Location Result Operand Comment
i1 10 20 35
I ' I ]
| 122ixk I | I |
| | | |
| 123ixk | | | |

HR-2000 3-58




K
o

INSTRUCTIONS 124 - 125

| | | |
Result Operand Description Machine |

I I | |
Instruction |
| | : ! .
I I i 1 1
I sj ISj*fSk |Floating—point product of (Sj) l 124ijk |
| | |and (sg) to sj | l
| | |Executes same as 124ijk | 125ijk |
| | | |

Instruction 124 forms the 64-bit floating-point product of two 64-bit
floating-point operands. The operands are read from registers S; and
Sx. The result is delivered to the §; register.

Special case treatment of instruction 124 is described under
Floating-point Multiply unit in the Background Processor section of this
manual.

Example:
Code generated |Location Result Operand Comment
. 11 10 20 35
[ I I I !
| 124ij% l | | |
| I I
| 12515k | | |
I I I

HR-2000 3-59



INSTRUCTIONS 126 - 127

u 1 | 1' 1

Result Operand Description Machine
I I Instruction I
1 | ! | 1
¥ 1 T I 1
| S { ls]-*isk lReciprocal iteration of | 126ijk I
| |3(sj)*(sy) to 54 | 1
sj Sj*qsk Reciprocal square root iteration 127ijk
l | lof [3-(sj)*(sp)1/2 to s; | I
| l l

Instruction 126 forms the 64-bit floating-point quantity used in the
reciprocal iteration algorithm. The operands are read from registers
Sj and Sg. The result is delivered to the S; register.

Instruction 127 forms a floating-point quantity used in the reciprocal
square root iteration algorithm. The operands are read from registers
Sj and Syk. The result is delivered to the S5; register.

See the description of Floating-point Multiply unit in the Background

Processor section of this manual for details of this sequence.

hkkkhkhkkhdhhhkhkhdhhkhhhhhhkhhhkhhhhikhhkhhhhhkhhkhhhhdhdhhkhki
CAUTION L
Instruction 126 should be used only with the reciprocal
approximation instruction (132), and instruction 127
should be used only with the reciprocal square root

approximation instruction (133).

ok de g K Je de e Jo Jo e Je e de F e e e Fe Jo ke Jo K de ke e do e ke Je g de de e Je de o Jo de de Fe e de do Fede g Fe do Fe K ke e he ke ke

Example:
lCode generated lLocatioanesult IOperand |Comment
1 1 10 L, 20 .35
I I l | |
| 126ijk | l | I
|127ijk | | l l

I

HR-2000 3-60



INSTRUCTIONS 130 - 131

sign extension

I I | I
: Result | Operand | Description | Machine |
I | | | Instruction |
N 4 | i y
1 1 ’ ¥ 1
I . 1 I : o | : |

sj ay ,Transmlt (ag) to sj with | 130ixk

| I no sign extension '
I sy l+ag I'I‘ransmit (ag) to s; with I 131ixk I
| I I I
I | | I

Instructions 130 and 131 read a 32-bit operand from the Ay register
and transmit it to the S; register.

Instruction 130 zero fills the high-order 32 bits, creating a 64-bit
result.

Instruction 131 fills the high-order 32 bits with copies of bit 231,
creating a 64-bit result.

Example:
ICode generated lLocatioanesult |Operand ’ IComment
| |1 110 {20 135
I | I I I

130ixk
| I I I I
bistixk I ' | |

1 | 1 !

HR-2000 3-61



INSTRUCTIONS 132 - 133

Ito sy

he s c——— —— — i o——— ——— o]

I I I I

| Result | Operand | Description | Machine

| I I | Instruction

: i : |

: s }/th :Floati?g—p?int reciprocal : 132ijx
approximation of (Sj) to s;

| sj I*qu Floating-point reciprocal square ! 133ijx

I | root approximation of (Sj) |

I I |

l | l

Instruction 132 forms a floating-point first approximation to the
reciprocal of a floating-point operand. The operand is read from the
S5 register, and the result is delivered to the S; register.

Instruction 133 forms a floating-point first approximation to the
reciprocal square root of a floating-point operand. The operand is read
from the §; register, and the result is delivered to the §j

register.

See the description of Floating-point Multiply unit in the Background
Processor section of this manual for details of the sequence.

Example:
ICode generated ILocationIResult IOperand IComment
| 11 110 120 135
Lo | | | I
‘1321]x I | | I
I . I I I I
1331ijx

I I I I

HR-2000 3-62




i

INSTRUCTIONS 134 - 137

|

I I I I
| Result | Operand | Description | Machine
| | | | Instruction
i y | i
¥ T T ]
I I | |
' ’ 'Pass 134xxx
ass XXX
P I 135
I I lpass | 136xxx
I I IPass | 137xxx
I I |

e TS SR ST | WU —

Instructions 134 through 137 issue without functional activity.

Example:

Code generated

ILocationIResult

IOperand

lComment

11

110

120

135

I
I
|
I
: 135xxx
I
I
I

HR-2000

I
I
I
I
|
I
I

I
[
|
I
I
|
|

I
I
I
I
I
I
I



INSTRUCTIONS 140 and 141

land (vg) to vj

Instruction 140 reads a stream of vector elements from the Vy

register, processes the data in the vector logical unit, and delivers a
stream of result elements to register V;. Data is read from the

Sj register and is held in the vector logical unit during the

streaming operation.

I I | I '
| Result | Operand | Description | Machine f
I | | | Instruction l
i | 1 ! }
L T 1 1 v
l | . 1 . |
| vj ‘Sj&vk chglcal products of (Sj) 140ijk !

and (vg) to vj l |
: vi :Vj&Vk Logical products of (Vj) : 141ijk |
I | | |

Instruction 141 reads two sets of vector elements, processes them in the
vector logical unit and delivers result elements to register V;j. The
source streams are from the Vj and Vi registers.

For both instructions, the VL register determines the number of operations
performed. Each element of the vector is processed independent of the
other elements in the stream. A bit-by-bit logical product is formed
between the two source operands. The resulting 64 logical products are
then delivered as one element to the destination stream.

Example:
[Code generated |Location[Result ]Operand ‘Comment
L 11 110 120 135
! | | | I
140ijk
| 7504 | | | x
I 1a1i5k | | | |
I | | [ 1

HR-2000 3-64




INSTRUCTIONS 142 and 143

land (vg) to v;
I

| l | |
Result Operand Description Machine I

I I I l
Instruction |
I l | I |
! 1 1 ¥ l
I Vi Is]-\vk lLogical differences of (s5) ' 1421ijk '

| l landa (vg) to vj; |
k i . I

| Vi IVj\Vk iLogical differences of (Vj) | 143ijk

I I | I
L I I |

Instruction 142 reads a stream of vector elements from register Vi,
processes the data in the vector logical unit, and delivers a stream of
result elements to the V; register. Data is read from the Sj

register and is held in the vector logical unit during the streaming
operation.

Instruction 143 reads two streams of vector elements, processes them in
the vector logical unit, and delivers a stream of result elements to
register Vj. The source streams are from registers Vj and Vg.

For both instructions, the VL register determines the length of the
operation. Each element of the vector stream is processed independent of
the other elements in the stream. A bit-by-bit logical difference is
formed between the two source operands. The resulting 64 logical
differences are delivered as one element to the destination stream,

Example:
ICode generated ILocation[Result |Operand IComment
1 11 110 120 135
l | I I l
142ijk
| 52 l | 1 |
|l43jjk | | | |
| 1 } | f

HR-2000 3-65



INSTRUCTIONS 144 and 145

! l l I l
| Result | Operand | Description | Machin?

| | | | Instruction |
1 i 1 3 |
I f f { 1
| vi |S'!V lLogical sums of (s) l 144ijk |

and (vg) to vj

| vi 'Vj!Vk Logical sums of (vj) | 145ij% |
| |and (vg) to vj | |
| vj IVj |v register copy (j=k) | 145137 |
I I |

Instruction 144 reads a stream of vector elements from register Vy,
processes the data in the Vector Logical unit, and delivers a stream of
result elements to the V; register. Data is read from the Sj

register and is held in the Vector Logical unit during the streaming
operation.

Instruction 145 reads two streams of vector elements, processes them in
the Vector Logical unit, and delivers a stream of result elements to
register Vj. The source streams are from registers Vj and Vg.

For both instructions, the VL register determines the length of the

operation. Each element of the vector stream is processed independent of

the other elements in the stream. A bit-by-bit logical sum is formed S
between the two source operands. The resulting 64 logical sums are B
delivered as one element to the destination stream.

Example:
ICode generated |Location|Result lOperand lComment
I 11 110 120 135
| | | | |
144ijk
| F45 | | | l
| 145177 l l l |
i 1 1 | i

HR-2000 3-66



INSTRUCTION 146

(vg) if vm bit=0 to vj

Result Operand Description Machine

| I l | |
| | | [ Instruction '
| i i i i
: vi :Sj.vk&vm lTransmit (Sj) if vm bit=1; : 146ijk :
I | |

I I

Instruction 146 reads a stream of vector elements in sequence from the

Vg register, processes the data in the Vector Logical unit, and

delivers a stream of result elements to the V; register. Data is read
from the Sj register and is held in the Vector Logical unit during the
streaming operation. The content of the VL register determines the length
of the vector stream.

The VM register works as a control mechanism to select either the S
register data or the vector element data as each element arrives at the
Vector Logical functional unit. A bit of VM register data is associated
with each element. The high-order bit of VM data is associated with the
first vector element. The following bits of VM register data correspond
with the following vector elements. The S register data is selected as a
result element if the VM register contains a 1 in the designated element
position. The Vi register element is selected as a result element if

the VM register contains a 0 in the designated element position.

Example:

lCode generated |Location|Result ]Operand IComment
! 11 110 .20 135

r T T L T

I . l | l l

| 14617k i I I

HR-2000 3-67



INSTRUCTION 147

(vg) if vm bit=0 to vj

| Result | Operand | Description | Machine

| | | l Instruction
f i E i

: v :Vj!vk&vm lTransmit (v5) if vm bit=1; : 1471ijk

l l |

b ssen e kb it et

Instruction 147 reads two streams of vector elements, processes them in
the Vector Logical unit, and delivers a stream of result elements to the
Vi register. The source streams are from registers Vj and

Vg. The content of the VL register determines the length of each

vector stream.

The VM register works as a control mechanism to select either the Vj
data or the Vj data as each element pair arrive at the Vector Logical
unit. A bit of VM register data is associated with each element. The
high-order bit of VM data is associated with the first vector element.
The following bits of VM register data correspond with the following
vector elements. The V3 data is selected as a result element if the
VM register contains a 1 in the designated element position. The Vg
register element is selected as a result element if the VM register
contains a 0 in the designated element position.

Example:

lCode generated |Location|Result lOperand [Comment
] 11 !10 120 135

[ l l | I

| !

147ijk |

HR-2000 3-68




Ry

INSTRUCTIONS 150 and 151

zero f£ill, results to vi

I I I |
Result Operand Description Machine

I l | I Instruction
| ] y {
| ! | |

v vj<ag Shift (v4) left (ag) bits with 150ijk
, l Izero fill, results to vj | >
I vi |Vj>ak |Shift (v4) right (ag) bits with ’ 151ijk

I

L l |

Instructions 150 and 151 read a stream of vector elements in sequence
from the Vj register, process the data in the Vector Integer unit, and
deliver a stream of result elements to the V; register. Data is read
from the Ay register and is held in the Vector Integer unit during the
streaming operation. The content of the VL register determines the
length of the vector stream.

Instruction 150 shifts data to the left and instruction 151 shifts data
to the right. Each element of the vector stream is processed independent
of the other elements in the stream. Each element is shifted by the
number of bit positions indicated by the Ay register value. Zero bits
are inserted as bits shift off.

The content of the Aj register is treated as a 32-bit positive
integer. Shift counts equal to or greater than 64 cause a zero data
field.

Example:

[Code generated lLocationIResult IOperand IComment
1 i1 110 120 35

| i I T |

| 15017k | ‘ ‘ |
|1511jk , | I |

HR-2000 3-69



INSTRUCTIONS 152 and 153

places to vj

Result Operand I Description Machine
] Instruction

| ] ] i
r ¥ 1 I
| vj IvJ,vJ<ak lDouble shift (vj) left (ag) llSZijk
| | lplaces to V;
| 1
I I

vi.vj>ag lDouble shift (Vj) right (ay) I153ijk
|

Instructions 152 and 153 process the elements of data from the V4
register in pairs for this sequence. Each element is concatenated with
the following element and the resulting 128-bit field is shifted by the
number of bit positions in the Ap register data. A 64-bit field from
the original element window is then delivered to the destination vector
stream.

Instruction 152 shifts data to the left. The first element of V5 data
is positioned in the high-order 64 bits of the 128-bit shift field. The
second element of Vs data is positioned in the low-order 64 bits of

the 128-bit shift field. The 128-bit field then shifts left by the
amount of the shift count. A first result element is read from that
portion of the 128-bit field originally occupied by the first element of
data.

The second element of Vj data is then positioned in the higher
portion of the 128-bit shift field. The third element of V; data is
entered in the low-order 64 bits of the field. This 128-bit field is
then shifted left by the amount of the shift count. A second result
element is read from the high-order 64 bits of the 128-bit field
originally occupied by the second element of data.

This process continues until the last element of data is entered in the
high-order 64 bits of the 128-bit shift field. A zero field is entered

in the low-order 64 bits. This 128-bit field is then shifted left by the

amount of the shift count. The last result element is read from the
upper portion of the shift field.

The Ay register content is treated as a 32-bit positive integer.

Shift counts greater than 128 result in a zero data field. Zero bits are

inserted at the right end of the 128-bit shift field as bits are shifted
off to the left.

HR-2000 3-70

s — — ———— —

D



INSTRUCTIONS 152 and 153 (continued)

Instruction 153 shifts data to the right. The first element of V5

data is positioned in the low-order 64 bits of the 128-bit shift field.
The high-order 64 bits of the 128-bit shift field is cleared. The 128-bit
field then shifts to the right by the amount of the shift count. A first
result element is read from the low-order 64 bits of the 128-bit field
originally occupied by the first element of data.

The second element of V5 data is then positioned in the lower portion

of the 128-bit shift field. The first element of V; data is entered

in the high-order 64 bits of the field. This 128-bit field is then
shifted right by the amount of the shift count. A second result element
is read from the low-order 64 bits of the 128-bit field originally
occupied by the second element of data.

This process continues until the last element of data is entered in the
low-order 64 bits of the 128-bit shift field. The preceding element is
entered in the high-order 64 bits. This 128-bit field is then shifted
right by the amount of the shift count. The last result element is read
from the low-order 64 bits of the field.

The Ap register content is treated as a 32-bit positive integer.

Shift counts greater than 128 result in a zero data field. O bits are
inserted at the left end of the 128-bit shift field as bits are shifted
off to the right.

Example:

lCode generated ILocatioanesult ]Operand IComment
] !1 210 !20 135

| . I I l l
152ijk

| =>4 | 1 | |

| 1eaiix | 1 1 |

| 15317 \ 1 | '

HR-2000 3-71



INSTRUCTION 154

Result Operand Description I Machine

|

i I Instruction

| L ' ] i
1 I I i 1

(Sj) and (vg) to vj

Instruction 154 reads a stream of vector elements in sequence from the
Vi register, processes the data in the Floating-point Multiply unit,
and delivers a stream of result elements to the V; register. Data is
read from the Sy register and is held in the Floating-point Multiply
unit during the streaming operation. The content of the VL register
determines the length of the vector stream.

| v lSj*ka lFloating—point product of l 154ijk
I

Each element of the vector stream is processed independent of the other
elements in the stream. The Floating-point Multiply unit forms the
64-bit floating-point product of the arriving vector element and the
scalar operand held in the unit. The result element is delivered to the
V; register. See the description of Floating-point Multiply unit for
details and special case treatment.

Example: ”E
ICode generated ILocation[Result IOperand lComment

\ 11 L .10 120 135

1 | I { 1

| 1545k | | | |

HR-2000 3-72



s .J;

INSTRUCTION 155

I(Vj) and (vg) to vj

l I I I |
| Result | Operand | Description | Machine |
| I | | Instruction '
I i i i I
: \Z :Vj*ka IFloating—point product of : 155ijk :
I I | |

Instruction 155 reads two streams of vector elements, processes them in
the Floating-point Multiply unit, and delivers a result stream to the
Vi register. The source streams are from registers Vj and

Vyx. The VL register determines the length of each vector stream.

Each element of the vector stream is processed independent of the other
elements in the stream. The Floating-point Multiply unit forms the 64-bit
floating-point product of the arriving vector elements. The result
element is delivered to the V; register. See the description of
Floating-point Multiply unit in the Background Processor section of this
manual for details and special case treatment.

Example:
ICode generated |Location|Resu1t IOperand IComment
| 11 110 120 135
.. I
:1551]k | | I

HR-2000 3-73



INSTRUCTIONS 156 and 157

of [3—(Vj)*(Vk)]/2 to vj

Instructions 156 and 157 read two streams of vector elements, process them
in the Floating-point Multiply unit, and deliver a result stream to the

V; register. The source streams are from registers Vj and

Vg. The content of the VL register determines the length of each

vector stream.

' [ l | |
I Result | Operand l Description | Machine !
| | | | Instruction I
| | | ! '
l v |vj*ivk lReciprocal iteration of | 156ijk I
I ' 2—(Vj)*(vk) to vj l

: vi le*qVk :Reciprocal square root iteration : 1571ijk :
L | I |

For instruction 156, the Floating-point Multiply unit forms a 64-bit
floating-point quantity used in the reciprocal iteration algorithm from
each pair of arriving vector elements.

For instruction 157, the Floating-point Multiply unit forms a 64-bit
floating-point quantity used in the reciprocal square root iteration
algorithm from each pair of arriving elements.

See the description of Floating-point Multiply unit in section 2 for
details and special case treatment.

Example:

| code generated lLocation Result Operand IComment
11 10 20 135

1 , | 1 '

| 15617k | l l |

| | I l I

| 1571ijk | | | I

HR-2000 3-74



s

INSTRUCTIONS 160 and 161

I
| Result I Operand I Description . Machine

|

‘ | Instruction |

] | | ] |

{ I | | |

Vi S3+V Integer sums of (s4) and 160ijk

| AEACI j l |
(vg) to vj N

| v le+Vk IInteger sums of (vj) and I 161ijk '

(vg) to vj

I | l I |

Instruction 160 reads a stream of vector elements from the Vp

register, processes the data in the Vector Integer unit, and delivers a
stream of result elements to the V; register. Data is read from the

Sj register and is held ‘in the Vector Integer unit during the

streaming operation.

Instruction 161 reads two streams of vector elements, processes them in
the Vector Integer unit, and delivers a stream of result elements to the
V; register. The source streams are from registers Vj and Vg.

For both instructions, the VL register determines the length of the
vector stream. Each element of the vector stream is processed
independent of the other elements in the stream. The Vector Integer unit
forms the integer sum of the two operands. The result is delivered as
one element of the destination stream.

Example:

ICode generated ILocation]Result IOperand lComment
\ (1 .10 120 135

r I | ] |

| 160ijk | | | |

| 1614jk ] ] | |

HR-2000 3-75



INSTRUCTIONS 162 and 163

| I I l l
| Result I Operand | Description ] Machine I
| | | | Instruction
L : | : l
| :
|
| vi ISj~Vk |Integer differences of (Sj) and : 162ijk :
(vg) to vj
| Vi Iv-—v 'Integer differences of (v5) and t 163ijk
i I Vk J
l l(vk) to vj | |
I .

L | |

Instruction 162 reads a stream of vector elements from Vi register,
processes the data in the Vector Integer unit, and delivers a stream
result elements to the V; register. Data is read from the Sj
register and is held in the Vector Integer unit during the streaming
operation,

Instruction 163 reads two streams of vector elements, processes them
the Vector Integer unit, and delivers a stream of result elements to
V; register. The source streams are from registers Vj and Vg.

For both instructions, the VL register determineés the leangth of the
vector stream. Each element of the vector stream is processed
independent of the other elements in the stream. The Vector Integer
forms the integer difference of the two operands. The result is
delivered as one element of the destination stream.

of

in
the

unit

Example:
Code generated |Location]Result IOperand IComment
11 110 . l20 135
1 1 | | |
| 1621k ] | l |
| | | | |
163ijk I
I | | I I

HR-2000 3-76



INSTRUCTIONS 164 - 165

| l | I I
| Result | Operand | Description | Machine |
! ! ! ! Instruction !
L4 ¥ T T 1]
: vi }ij {Population counts of (vj) to vj : 164170 }
' vij Iqu Population count parity of (Vj) | 164ij1 ‘
to vj
l Vi IZVj |Leading zero count of (Vj) | 165ijx I
I ' [to vi | |
| l | |

Instruction 164 reads a stream of vector elements in sequence from the
V; register, processes the data in the Vector Integer unit, and
delivers a stream of result elements to the V; register. The content
of the VL register determines the length of the vector stream.

Each element of the vector stream is processed independent of the other
elements in the stream., The Vector Integer unit counts the number of one
bits in each vector element and delivers the count as a positive integer
to the result stream.

Instruction 164ij0 counts the number of bits set to 1 in each element
of V; and enters the results into corresponding elements of Vj.

The results are entered into the low-order 7 bits of each Vj element;
the remaining high-order bits of each V; element are zeroed.

Instruction 164ij1 counts the number of bits set to 1 in each element

of Vi. The least significant bit of each result shows whether the
result is an odd or even number. Only the least significant bit of each
result is transferred to the least significant bit position of the
corresponding element of register V;. The remainder of the result is
set to zeroes. The actual population count results are not transferred.

Instruction 165ijxX reads a stream of vector elements in sequence from
the V; register, processes the data in the Vector Integer unit, and
delivers a stream of result elements to the V; register. The content
of the VL register determines the length of the vector stream.

Each element of the vector stream is processed independent of the other
elements in the stream. The Vector Integer unit counts the number of
leading zeros in each element. The element is considered as a field of
64 individual bits in this operation. This count is delivered as a
positive integer to the result stream.

HR-2000 3-77



INSTRUCTIONS 164 - 165

Example:

|Code generated Location|Result lOperand ICémment
. 1 10 120 135

I I T [

| 164170 | | [ |

| 164151 l | | I

I 1 I I I

| 16517x | | I |

| I | I |

HR-2000

S



INSTRUCTIONS 166 - 167

[to v;

| l l | l
| Result Operand | Description | Machine
P

| | | | Instruction '
] ] ] ]
i | | | '
I vi /hvy Floating-point reciprocal l 1661ixk [

I approximations of (vg) to vj ' I
' vj l*qvk ]Floating—point reciprocal square 167ixk I
| | root approximations of (vy) = |
I I |
I I I 1

Instruction 166 and 167 read a stream of vector elements in sequence from

the Vi register, process the data in the Floating-point Multiply unit,
and deliver a stream of result elements to the V; register. The

content of the VL register determines the length of the vector stream.
See the description of the Floating-point Multiply unit in section 2 for
details of this sequence.

For instruction 166, the Floating-point Multiply unit forms a
floating-point quantity which is a first approximation to the reciprocal
of the arriving vector element,

For instruction 167, the Floating-point Multiply unit forms a
floating-point quantity which is a first approximation to the reciprocal
square root of the arriving vector element.

Example:

!Code generated Locatioanesult Operand lComment
1 110 20 135

' I I |

| 166ixk | [ [ l

I I 1 I I

| 167ixk | | | |
I I I l

HR-2000 3-79



INSTRUCTIONS 170 - 171

land (vg) to v;

Instruction 170 reads a stream of vector elements in sequence from the
Vy register, processes the data in the Floating-point Add unit, and
delivers a stream of result elements to the V; register. Data is read
from the S5 register and is held in the Floating-point Add unit during
the streaming operation.

l | | I :
[ Result | Operand | Description | Machine I
| | | | Instruction |
{ L | ] i
! | | T 1
I vi 'Sj+ka |Floating—point sum of (Sj) | 170ijk |
l | lana (vg) to vj ' '
| Vi lvisfv |Floating—point sum of (v4) | 171ijk l
T ? | |
I l | |

Instruction 171 reads two streams of vector elements, processes them in
the Floating-point Add unit, and delivers a result stream to the Vj
register. The source streams are from registers Vj and Vg.

For both instructions, the content of the VL register determines the
length of the vector stream. Each element of the vector stream is
processed independent of the other elements in the stream. The
Floating-point Add unit forms the 64-bit floating-point sum of the two
operands. The result is delivered to register V;. See the
description of Floating-point Add unit for details and special case
treatment.

Example:
!Code generated |Location[Result [Operand [Comment
L !1 !10 !20 &35
I l | | |
1701ijk
: I } | I l
1711k | ' |
I I I l I

HR-2000 3-80




INSTRUCTIONS 172 - 173

I(Vj) and (vg) to vj

' I l I I
| Result | Operand | Description | Machine |
| | | | Instruction |
| ] { | |
| T | ¥ 1
l vj ISj—ka lFloating—point difference of } 172ijk I
' | I(Sj) and (vg) to vj l
} vi :Vj—ka Floating-point difference of : 1731ijk :
I I | I

Instruction 172 reads a stream of vector elements in sequence from the
Vj register, processes the data in the Floating-point Add unit, and
delivers a stream of result elements to the V; register. Data is read
from the Sj register and is held in the Floating-point Add unit during
the streamling operation.

Instruction 173 reads two streams of vector elements, processes them in
the Floating-point Add unit, and delivers a result stream to the V;
register. The source streams are from registers Vj and Vg.

For both instructions, the content of the VL register-determines the
length of the vector stream. Each element of the vector stream is
processed independent of the other elements in the stream. The
Floating-point Add functional unit forms the 64-bit floating-point
difference of the two operands. The result is delivered to register
Vj. See the description of Floating-point Add unit for details and
special case treatment.

Example:
]Code generated lLocatioanesult IOperand lComment
I Il IlO IZO I35
| . I I I I
172ijk
| 1<t ; | | }
17317 I I

3ijk
I I I I |

HR-2000 3-81



INSTRUCTIONS 174 - 175

| ] | |
l Result | Operand . Description | Machine I
| | | | Instruction I
| ! | I |
¥ 1 ¥ U I
l Vi Ifix,vk IInteger form of floating-point l 174ixk |
| I l(vk) to vj ’ |
I v |f1t,vk IFloating—point form of integer | 175ixk I
‘ | I(vk) to vj l |
I | I i

Instructions 174 and 175 read a stream of vector elements in sequence
from the Vji register, process the data in the Floating-point Add unit,
and deliver a stream of result elements to the V; register. The content
of the VL register determines the length of the vector stream.

Instruction 174 performs the conversion from floating-point to integer
format by adding the operand to a constant in the Floating-point Add
unit. The result is sign extended to form a 64-bit integer.

Instruction 175 performs the conversion from integer to floating-point
format by adding the operand to a constant in the Floating-point Add
unit. The result is delivered to the V; register.

See the description of Floating-point Add unit for details and special
case treatment.

Example:
]Code generated ILocation Result IOperand ]Comment
1 1 10 .20 135
. 1 { I |
: 174ixk | I | I
| I I I
| 175ixk l ! I |

HR-2000 3-82



INSTRUCTIONS 176 - 177

| | I

[ Result | Operand | Description | Machine

| | I | Instruction
] \ 1

! I [ i

l vi 'c1 +Sj&sy |Enter vj with compressed ' 176ijk

l l iota S5 and sg I

| | lExecutes same as 176ijk I 177%xXx

I I !

Instruction 176 forms a vector from two scalar operands. The first
scalar operand is a 64-bit mask from the S; register. The second scalar
operand is a 32-bit vector stride from the Sj register. The stride is
taken from the low-order 32 bits of the Sj register data.

The Vector Integer unit forms a 64-element iota vector from the stride.
This is a vector whose first element has a zero value, and whose
subsequent elements are spaced by the stride increment. The sequence of
element values is then as follows.

0*Sy, 1%Sy, 2*8;, 3%Sy, 4%S;, 5%S;, etc.
k k k k k k

The two scalar operands are captured and held in the Vector Integer
unit. The Sj value is repeatedly added to the accumulated sum to form
the iota vector. The 64-bit mask is shifted to the left 1 bit position
per clock period. The Vector Integer unit then compresses the iota
vector, using the mask data, and delivers the resulting vector to
register Vj.

An element of the iota vector is delivered to the result vector where
there is a 1 bit in the mask. An element of the iota vector is skipped,
and the position compressed, where there is a 0 bit in the mask. The
resulting vector has the same number of elements as there were one bhits
in the mask.

The first mask bit tested is the high-order bit. Bits are then tested in
order to the low-order bit. A zero test is made on the remaining mask
bits to stop the sequence. Execution time is then variable depending on
the mask content.

Example:
Code generated ILocation Result lOperand Comment
1 10 120 35
I ' | I
| 17617k I I I I
I I | |
I I

l177xxx !

HR-2000 3-83






4, COMMON MEMORY

Common Memory contains 256 million words of dynamic memory. The dynamic
memory consists of 128 banks with 2 million words in each bank. Each
72-bit word consists of 64-data bits and 8 error correction bits.

Common Memory is organized into quadrants with 32 banks in each

quadrant. Each memory quadrant has a data path to each of four Common
Memory ports. A Background Processor and a foreground communication
channel are connected to each Common Memory port. Total memory bandwidth
is 64 gigabits per second. Total memory capacity is 17 gigabits.

The Foreground Processor, Background Processors, and disk controllers
share Common Memory. Common Memory contains program code for the
Background Processors, data for problem solution, and Foreground
Processor system tables.

4.1 MEMORY ADDRESSING

A word in memory is addressed by 32 bits. The low-order 2 bits select
the gquadrants and the next 5 bits select the bank. Figure 4-1
illustrates the format of the memory address for Common Memory.

231 27 26 22 51 50

Bank Quad

Bank A
an ddress Select Select

Figure 4-1. Memory Address for Common Memory

HR-2000 4-1



4.2 MEMORY ACCESS

The Background Processors are locked into a phased access time scheme
with the memory quadrants through the Common Memory ports.‘ Through its
Common Memory port, a Background Processor can access any given quadrant
but only in the processor's own phase time, that is, every fourth clock
period (CP). 1If a Background Processor requests a quadrant out of its
phase time, the request is delayed until the correct time.

For example, assume the Background Processors are A through D, and the
quadrants are 0 through 3. Also assume processor A is locked into
quadrant O at phase time 0. If processor A references quadrant 0 at
phase time 1, it must wait until the next phase time 0 (CP 4) to have
access to memory in that quadrant.

Memory banks in a quadrant share a data path to each Common Memory port.
Because of the phased access time between the quadrants and the Common
Memory ports, however, only one bank accesses the path in a given 4-CP
time slot. Because two banks never compete for the same data path in the
same time slot, each bank functionally has an independent path to each of
the four Common Memory ports.

4.3 MEMORY CONFLICTS

To prevent memory conflicts, each memory bank has a Bank Busy flag. If
the bank is busy., the quadrant sends a rejected signal to the requesting
memory port. The requesting port retries the data.

4.4 MEMORY BACKUP

Memory backup occurs when too many memory references arrive at a single
memory quadrant. Each Common Memory port has four quadrant buffers, one
for each quadrant, each buffer can hold two memory references for its
memory quadrant. Therefore, references can continue to the memory port
when the reference is not in the proper phase time. When a quadrant
buffer in a memory port is filled, and another reference to that quadrant
is made, the memory port begins a backup procedure.

The memory port backup procedure stops instruction issue for the
associated Background Processor if that processor is making a memory
reference. Vector streams initiated in the Background Processor and
associated with a Common Memory reference are held.

HR-2000 4-2




After all references have been submitted for retry, a stop issue is
released allowing additional references to issue. A conflict during the
retry process causes the backup procedure to begin again at the point the
conflict occurred; which could be the original backup references or
additional new references filling buffer positions that became empty
during retry.

NOTE

A special timing problem exists for execution of
Background Processor instruction 072 (the gather
instruction). This instruction allows addresses in any
sequence with respect to the low-order 2 bits, quadrant
select. Without special treatment of this instruction,
the data could arrive at the Vector Destination
register out of order. Therefore, the hardware forces
a maximum memory reference pattern of four references
and 12 null references which averages to one reference
every 4 clock periods.

4.5 MEMORY ERROR CORRECTION

A single error correction/double error detection (SECDED) network is used
between the Background Processors and memory. SECDED assures that data
written into memory is returned to the Background Processors with
consistent precision.

Using SECDED, the single error alteration is automatically corrected if a
single bit of a data word is altered before the data word is passed to
the computer. If 2 bits of the same data word are altered, the double
error is detected but not corrected. 1In either case, the Background
Processors can be interrupted, depending on interrupt options selected,
to allow processing of the error. For 3 or more bits in error, results
are ambiguous.

The 8 check bits and the data word are stored in memory at the same
location. When read from memory, the 64-bit matrix, illustrated in
figure 4-2, is used to generate a new set of check bits, which are
compared with the old check bits that were stored in memory. The
resulting 8 comparison bits are called syndrome bits (S bits). The
states of these S bits are symptomatic of any error that occurred (1 = no
compare). If all syndrome bits are 0, no memory error is assumed.

HR-2000 4-3



The matrix is designed so that:

If all syndrome bits are 0, no error is assumed.
If only 1 syndrome bit is 1, the associated check bit is in error.

If more than 1 syndrome bit is 1 and the parity of all syndrome
bits is odd, then a single correctable error is assumed to have
occurred. The syndrome bits can be decoded to identify the bit in
error.

If 3 or more memory bits are in error, the parity of all syndrome
bits is odd and results are ambiguous.

If more than 1 syndrome bit is 1 and the parity of all syndrome
bits 80 through S7 is even, then a double error (or an even number
of bit errors) occurred within the data bits or check bits.

check bit ¢
check bit 1
check bit 2
check bit 3
check bit 4
check bit s
check bit 6
check bit 7

CHECK BYTE
271 270 269 368 5,67 566 265 64 263 262 561 360 59 558 357 356 255 954 953 552 551 550 549 548
% X X X X X X X X
X X X X X ¥ X X X
x X X % X X X X X X X X X X
X X X X X X X X X X X x X
X % % x X x X
x X X X b4 X x
% X X X X x X X
X X % X X x X X X
2147 2'-!6 2'45 24k 243 242 2101 2’-00 239 238 237 236 235 534 533 232 231 230 529 228 2927 226 5925 24
X X X X X X x X X X X X X X X X x x X X
X X X X X X x X X X % X X X X X X X X R
X X X X X X X X X X X X
X X X X xXx X X X x x X X
x % x b3 X x x X
X X X X X X X % X X % X X x X
X X ®x x X X X X X X 0% X X x X
X 3 X X X X X % X X X X X X X X%
223 222 321 220 319 518 317 516 215 214 513 212 511 710 29 58 27 26 25 o% 23 32 51 50
X x X X X X X X x X b3 x
X X X x X X X X X X X X
X X x X X X X X X X X X
X X x X X X x X X
X x X X x x X X X X X X X X X X X x %
x X X X X X X X X X X X X X
X x X% X X X X X X X X X X
X X X X X X X X X X X X X X
1270

Figure 4-2. Error Correction Matrix

HR-2000 4-4




5. FOREGROUND SYSTEM

The CRAY-2 computer contains a foreground system to control and monitor
system operations. The Foreground Processor contains the following:

. Four high-speed synchronous communication channels to interconnect
the Background Processors, Foreground Processor, disk controllers,
and Front-end Interfaces (FEIs)

. Foreground channel ports

- Four Common Memory ports to control data transfer between
Common Memory and the Foreground Processor, disk storage

units, and the FEI modules

- Four Background Processor ports to allow the Foreground
Processor to monitor and control the Background Processors

. Up to 40 I/0 devices can be attached
- Disk controllers to control up to 36 disk storage units
- Interfaces to connect the CRAY-2 mainframe to the 6 Mbyte per
second channels or Network Systems Corporation (NSC)

HYPERchgnnels

. A Foreground Processor to supervise overall system activity and
respond to requests for interaction among the system members

. A maintenance control console to deadstart the CRAY-2 mainframe
and monitor system operation

5.1 FOREGROUND COMMUNICATION CHANNELS

Four high-speed communication channels in the foreground system link the
Common Memory, Background Processors, Foreground Processor, disk
controllers, and FEIs. The Foreground Processor supervises the four
channels. Data blocks are generally 512 Common Memory words.

Each channel accesses one Common Memory port and one Background Processor
port. Each channel in the system can have up to four Front-end
Interfaces. Disk controllers are generally divided equally among the
channels. The disk controller configuration, however, can be adjusted
for special system requirements.

HR-2000 5-1



A channel interconnects the Foreground Processor, disk controllers, FEI
modules, a Background Processor port, and a Common Memory port in a
continuous channel loop. A configuration of a single channel loop is
shown in figure 5-1.

Disk Disk Front-end
» Controller |—--+»| Controller » Interface
n 0 n
Foreground I
Processor :
Common Background Front-end
- Memory - Processor o Interface
Port Port 0

nsy
Figure 5-1. Channel Loop

Each member of the loop is called a channel node. Each channel node
receives data on the path during each clock period and transmits that
data to the next node in the following clock period.. Data can then move
about the loop from any transmitting node to any receiving node.

5.2 FOREGROUND CHANNEL PORTS

Two independent sets of channel ports exist in the Foreground Processor:
Common Memory ports and Background Processor ports. The Common Memory
ports contain controls and status information for transfer of data to and
from Common Memory. The Background Processor ports contain controls and
status information used by the Foreground Processor to control the
Background Processors.

5.2,1 COMMON MEMORY PORTS

The foreground system contains four Common Memory ports. One Common
Memory port is associated with each of the four Background Processors. A
foreground channel is associated with each of the Common Memory ports.
The Foreground Processor makes Common Memory requests through the Common
Memory port for those foreground devices on the same channel. Background

HR-2000 5-2




Processor Common Memory requests have priority over foreground system
requests. There is one exception; the refresh has priority over the
background operand references. The Common Memory port accepts. requests
"according to the following priority scheme, from highest to lowest
priority:

1. Background Processor operand references
2. Background Processor instruction references
3. Foreground channel transfer references

5.2.2 BACKGROUND PROCESSOR PORTS

Each Background Processor has a Background Processor port connecting it
to one of the four channels in the foreground system. This port allows
the Foreground Processor to control the operation of the Background
Processor.

5.3 DISK STORAGE UNITS

The Foreground Processor spends considerable time transferring data
between the disk storage units and Common Memory. The system has
provision for 36 disk storage units. Control for these -units is on an
individual disk unit basis so that all 36 units can operate concurrently.

5.3.1 DISK SYSTEM ORGANIZATION

The disk storage units can be addressed as individual storage units, but
problems arise with this approach: the data transfer rate for individual
files, the rotational latency of the disk units, and the reliability of
mechanical devices.

The disk storage system on the CRAY-2 computer has the option of
operating in a synchronous mode with all disk units running in parallel
in a lockstep mode. For this approach to be practical, the buffer size
for individual disk references must be about 100,000 words.

A system configuration with 16 disk storage units can illustrate the
synchronous mode of operation. The Foreground Processor is given a Disk
address consisting of a pseudo-track number. This number is the cylinder
and head group for a disk file with no flaws. A table look-up converts
this pseudo-track into a physical track for each disk unit, All disk
storage units are positioned in parallel.

HR-2000 5-3



The Foreground Processor reads angular position for each disk surface to
determine the sector currently under the recording head. It then begins
a data stream from Common Memory to disk surfaces, choosing the portion
of the Common Memory buffer appropriate for the current angular position
of each disk storage unit. Data to 15 of the disk storage units is
directly from the Common Memory buffer. Data for the 16th disk storage
unit is a logical difference data stream using the word-by-word data from
the desired file. All 16 disk storage units write one track of data as
the basic reservation unit.

On data readback, the 16th disk is read concurrently with the other 15
disks. If the fire code detectors indicate no data errors, the 16th disk
data is discarded. If an error has occurred, it can be corrected without
time loss in the data stream.

The overhead introduced by this arrangement is one disk storage unit for
every 15 disks required. The following three benefits occur:

. The data rate is 525 megabits per second instead of 35 megabits
per second.

. The disk storage unit rotational latency has gone to 1/2 of a
sector time for Foreground Processor single disk I/0.

. A disk storage unit can fail completely due to a head crash or
motor failure with no loss of data or time.

A disk failure in this system can be corrected during system operation by
removing the defective file and replacing it with another unit. The new
unit can then be brought on line by running a background job that takes
2.5 minutes of disk system time to record the faulty unit data from the
data on the other 15 files.

5.4 FRONT-END INTERFACE

The CRAY-2 mainframe is connected to a front-end computer system through
an interface in the foreground system. The FEI can support a 6'Mbyte per
second channel or an NSC HYPERchannel. Each channel loop can hold up to
four interfaces.

Each interface contains a 512 64-bit word buffer. The data block can be
of arbitrary word length up to this limit.

HR-2000 5-4




5.5 FOREGROUND PROCESSOR

The Foreground Processor supervises system operation by responding to
Background Processor requests and sequencing Channel Communication
signals. The user programs reside in the Common Memory in a protected
area and are executed in Background Processors.

The Foreground Processor code is loaded at deadstart from a diskette at
the maintenance control console. (The maintenance control console is
described later in this section.) The code is firmware and is not
altered during the operation of the system.

Sekkhdkdhkhihdhkthkhhkhhhhhkhhhkhhhhhkbhhkhhkhhkhhhkhkhhkhhhhdkhkik®

CAUTION

A Foreground Processor program code error is as fatal
to system operation as a hardware failure.

g e e e e e e e e ke e ek e e de e e ok e ko e ke o e e de do de e de e ke dede dede dededo e dedede kok ke dekeok ok ke ke ke

The primary functions of the Foreground Processor program are real-time
response to various signals from a variety of sources in the foreground
system. As many as 50 simultaneous real-time sequences can be operating
in an interleaved manner in the Foreground Processor. Many of these
responses must be of the order of a microsecond or less.

The Foreground Processor contains the following sections:

. Instruction Memory

. Local Data Memory

. Arithmetic functions

. Real-time clock

. Error checking

. Instruction issue mechanism
. Instruction set

The Foreground Processor performs arithmetic functions on 32-bit
integers. The following functions are performed.

. Add

. Subtract

. Shift left, open ended
. Shift right, open ended
. Logical product

. Logical difference

. Logical sum

HR-2000 5-5



A detailed description of the Foreground Processor and its functional
units is beyond the scope of this manual. The Foreground Processor is
transparent to the user of the CRAY-2 Computer System.

5.6 MAINTENANCE CONTROL CONSOLE

The maintenance control console is used to deadstart the system and to
exchange data with the Foreground Processor. Instructions for execution
in the Foreground Processor are loaded into the Foreground Instruction
Memory at deadstart from a diskette at the maintenance control console.
This memory is a Read-only Memory during system operation. Data for
supervision of the system is maintained in Common Memory and is moved to
the Foreground Processor Local Memory as required.

HR-~-2000 5-6




APPENDIX SECTION






A. SYMBOLIC MACHINE INSTRUCTIONS LISTED BY FUNCTIONALITY

A.1 SYMBOLIC NOTATION

This appendix lists the symbolic machine instructions by functionality.
Instructions are described in the following functional categories:

.

.

Branch instructions

Pass instructions

Semaphore instructions

Register entry instructions

Inter-register transfer instructions

Memory transfer instructions

Integer arithmetic operation instructions
Floating-point arithmetic operation instructions
Logical operation instructions

Bit count instructions

Shift operation instructions

Instructions are listed in numerical order and explained in section 3 of
this manual. The octal machine code may be used to cross-reference
instructions in this appendix to their descriptions in section 3. For
descriptions of functional units, refer to section 2 of this manual.

HR-2000



Register Entry Instructions Integer Arithmetic Operations
ay exp Sy exp aj agtag aj aj-ag aj aj*ag
ai exp,s s3 exp,s 531 sjtsk si sj-sk
ag exp,s,p 83 exp,s,p Vi sjtv vi s3-Vk
ag exp,s,m s§ exp,s,n vi vitvg vi vj~Vk vi - cl,sy8sk
aj exp,p 3] exp,h
a exp,p.p s% exp,h,p
ay exp,p,m S exp,h,m Floating Point Operations
ajy exp,h s3 exp,l
N exp,f
s§ sy+fsy s3 sy—Esk s3 sy*Esg
. vi sy+ivg vi sy-Evg vi s3*Evg
Inter Register Transfers vi vi+ivg vi vy-Evg vi vi*Evg
a; sy sy ap sy sy*isy sy £ix,8; s3 sy*qsy
sS4 +ag vi vi*ivg vi fix, vk vi vVi*avk
EN sy vy vy ' 5y /hsy sy Elt, 55 sy *qsy
vi /hvk vi flt,vx vi *qvk
aj vl vl ay
s vm vm sy
54 rt afi efi
Bit Count Instructions Logical Operations
sS4 psy \71 pvy S3 sjlsk S3 sylsk S35 s3\s
s3 qs} vi qvy vi s3&vk vy 87V vi s3\vk
s3 25} vy 2v} vy vV vy vilvg vi vi\vg
Sy #sk&sj vm VirZ
shift Instructions vm VN
vy si!vk&vm Vi Vik.P
sy Sj<exp 83 sj>exp Vi vjivisvm v Vi,m
vi Vj(ﬂk Vi v1>ak
£ S3eSy<ag Sy S3,85>a, Pass Instructions Semaphore Instructions
v Vj,Vj<ag vi Vj.vy>ag
pass ] pass exp csm | ssm
Memory Transfers Branch Instructions
as [exp] fexp] ag Iz ayg,exp 3z sj.exp
ag fak] fax] ay in ak.exp In s} ,exp
s1 lexp} {exp] sy Jp ak.exp ip 5j.eXp
84 [ak] [ak] s3 Im ak,exp jm sy .,exp
vi [ak] lak] vi
jes exp 3 ax
sj (exp) (exp) sy iss exp r,ay ax
s3 {ag) (ak) Sy
sS4 (ak,exp) (ax.exp) sg 3 exp
s3 (aj.ak) (ay.,ak) Sy
vy (aj,ak) (ay,ak) vy err exit
vy (ak,vy) {ak/vy) vi exit exp
dri eri
1

1342,

HR-2000 A-2



A.2 BRANCH INSTRUCTIONS

A,2.1 CONDITIONAL BRANCHES

is ay erased

I I I I

| Result | Operand | Description | Machine
| ] | | Instruction
| ] | |

I I I I

I §- | ag,exp | Branch if (ay) is zero | 010xxk
| I I |

| In | ag.exp | Branch if (ay) is nonzero | 0l1xxk
| I I I

| Jp | ag,exp | Branch if (ay) is positive | 012xxk
I I 3 I

| Jm | ag.exp | Branch if (ay) is negative ] 013xxk
I | I I

| jz | sj.exp | Branch if (Sj) is zero | 014xjx
I I I I

| In | sj,exp | Branch if (sj) is nonzero | 015xjx
| I I I

| 9p | Sj,€Xp | Branch if (Sj) is positive | 016xjx
I I I I

| Jm | S j,exp | Branch if (Sj) is negative i 017xjx
I | I I

| Jes | exp | Jump to constant parcel if | 004 xxx
] | | Semaphore clear; set Semaphore |

| I I I

| Jss | exp | Jump to constant parcel if ] 005xxx
| | | Semaphore is set; set Semaphore |

I | I I

A.2.2 UNCONDITIONAL JUMPS

| I I |

| Result | Operand | Description | Machine
| | | | Instruction
| ] | ]

I I I I

| 3 | exp | Unconditional jump | 003xxx
I I | I

| r,aj | ag | Register jump to (ay) with | 002ixk
| | | return address to aj |

| I I I

I 3 | ag | Register jump to (ag), value ] 002kxk
I | I I

I | I I

—— s o i it ot St s it it o ami

HR-2000 A-3



A.2.3 EXITS

| I | I

| Result | Operand | Description | Machine
] | | | Instruction
| | ] ] :
I | I I

| err | | Error exit | 000x00
I I I I

| exit } | Normal exit | 000x01
I 1 | |

| exit | exp | Normal exit | 000xjk
I | I |

A,3 PASS INSTRUCTIONS

I | I [

| Result | Operand | Description | Machine
] | i | Instruction
| | | |

I I I I

| pass ] | Pass | 076xxx
I I | [

| pass | exp | Pass | 076ijk
I | I l

A.4 SEMAPHORE INSTRUCTIONS

I I [ I

| Result | Operand | Description | Machine
| I’ | | Instruction
! l | l

I I | I

| ssm | | Set Semaphore | 006xxx
I I I I

| c¢sm | | Clear Semaphore | 007xxx
I l | !

HR-2000




A.5 REGISTER ENTRY INSTRUCTIONS

A.5.1 ENTRIES INTO A REGISTERS

I I I I

| Result | Operand | Description | Machine

| | | | Instruction
| | | |

| I I I

| aj | exp | Load a; with a value | 026ijk or
| | | | 027ijk or
| | | | 040ijk or
| i | | 041ijk or
| | | | 042ijkttt
I | I I

| aj | exp,s | Load a; with a 6-bit value | OZGijkf or
| I | | 027ijkt

I | | [

| aj | exp,s,p | Load aj with a 6-bit | 026ijktt
| | | positive value |

| I | I

| aj | exp,s,m | Load a; with a 6-bit | oz27ijktt
| | | negative wvalue |

| | | |

| aj | exp,p | Load aj with a 16-bit value ] 040ixxT or
I I | | oalixxt

I | | |

| aj | exp,p.p | Load aj with a 16-bit | o040ixxtt
| | | positive value ]

I I I I

| aj | exp,p,m | Load aj with a 16-bit ] o41ixxtt
] | | negative value |

| I I I

| aj | exp | Load a; with a value ] 042ixx or
! ! | I

| aj | exp,h | Load aj with a 32-bit value |  o42ixxt or
I l

e

Forces one of two opcodes

4t Forces a single opcode
+++ Forces one of five opcodes

HR-2000



A.5.2

ENTRIES INTO S REGISTERS

=

I
I
I
I
I
I
I
!
I
I
I
I
I
I
|
I
|
|
I
|
|
I
!
I
I
!
!
|
I
I
I
I
|
I
(

| I I
Result | Operand | Description | Machine
I | | Instruction
| ] ]
| I !
s | exp | Load s; with a value i 050ixx or
| ! | 051ixx or
I I | 052ixx or
] | | 053ixx or
| | |  116ijk or
| | | 117ijkttt
| I I
sj | exp,s | Load sj with a 6-bit value | 116ijk+ or
I [ | 117ijkt
| I |
sj | exp,s,p | Load sj with a 6-bit | 116ijkII
| | positive value |
| | I
S | exp,s,m | Load s; with a 6-bit | 117ijkII
| | negative value |
! I |
S | exp,h | Load s; with a 32-bit value ] 050ixxT
| I | os1ixxt
I : | I
s | exp,h,p | Load s; with a 32-bit |  osoixxtt
| | positive value ]
I I I
sj | exp,h,m | Load s; with a 32-bit | 051ixxTt
| } negative value |
| I I
s | exp,1 | Load s; left side with a | 052ixxT
| |  32-bit value ]
[ I : I
Sj | exp,f | Load s; with a 64-bit value | 053ixxtt
I ! I
l

[

|

— . — — ——— — — —— . e it e s ot s it e it oo i i s s oot s o i s i s s i oo

|

1-
+t

HR-

Forces one of two opcodes
Forces a single opcode
+++ Forces one of six opcodes

2000




A.6 INTER-REGISTER TRANSFER INSTRUCTIONS

Instructions in this group provide for transferring the contents of one
register to another register. In some cases, the register contents can
be complemented, converted to floating-point format, or sign extended as
a function of the transfer.

A.6.1 TRANSFERS TO A REGISTERS

| Result | Operand | Description | Machine |
| | | | Instruction |
| ] | | |
l 1 1 | - |
- : aj { S { Copy (Sj) to aj : 0241ijx |
|
| aj | v1 | Copy (vl) to aj | 025ixx |
L l | l |
A.6.2 TRANSFERS TO S REGISTERS
| Result | Operand | Description ] Machine ]
i | | i | Instruction ]
| | ] ] |
I I I I !
| sj | S5 | Copy (Sj) to s; (Jj=k) | 103ijj |
I | I | |
| sj | ax | Copy (ag) to s; with no | 130ixk |
| | | sign extension | |
! I | ! I
| sj | +ax | Copy (ag) to sj with | 131ixk |
| | | sign extension ] |
| | | | |
| sj | vm | Copy (vm) to s; | 114ixx |
| | ! | !
| sj | rt | Copy real-time count to sj | 115ixx
l | l [ i

HR-2000 A-7



A.6.3 TRANSFERS TO V REGISTERS

[ I I I -
| Result | Operand | Description ] Machine |
! | | | Instruction |
| ] ] | |
1 | | | !
| vj | v | quy (vj) to vj | 145177 |
I | | (F=k) I I
| | l | B

A.6.4 TRANSFER TO VECTOR MASK REGISTER

The following syntax and its special form transmit the contents of
register Sj to the VM register. The VM register is zeroed if the j
designator is 0; the special form accommodates this case.

»This instruction may be used in conjunction with the vector merge
instructions where an operation is performed depending on the contents of
the VM register.

| | l | 1
| Result | Operand | Description | Machine |
| | [ ’ | Instruction |
| | | ] |
| I I | I
] wvm | Sj | Copy (Sj) to vm | 034xjx

L | l I ]

A.6.5 TRANSFER TO VECTOR LENGTH REGISTER

The following syntax and its special form enters the low-order 7 bits of
the contents of register Ay into the VL register.

The contents of the VL register determines the number of operations
performed by a vector instruction. Since a Vector register has 64
elements, from 1 to 64 operations can be performed. The number of
operations is (VL) modulo 64. A special case exists such that when (VL)
modulo 64 is 0, then the number of operations performed is 64.

HR-2000 A-8



In this publication, a reference to register V; implies operations
involving the first n elements where n is the vector length unless a
single element is explicitly noted as in the instructiomns §j Vj,

Ap and Vj, Ayp Sj.

r

I I |
| Result | Operand | Description | Machine
| i | | Instruction
| ] ] ]
I I ! I
| w1 | ag | Copy (ag) to vl ] 036xxk
I I | I

IS S —

Vector operations controlled by the contents of VL begin with element 0

of the Vector registers.

A.7 MEMORY TRANSFER INSTRUCTIONS

This category includes instructions that transfer data between registers

and memory.

A.7.1 STORES

Several instructions store data from registers into memory.

HR-2000



Local Memory writes

i Result | Operand | Description l Machine |
| ] ] | Instruction |
| ] | | i
I I I I I
| [exp] | ag | Write (ajp) to location exp | 045xxk
| ] | in Local Memory ] |
I I I I I
| [agl | aj | Write (aj) to location ay | 047xjk |
] ] | in Local Memory ] |
I I I I !
| [exp] | s j | Write (Sj) to location exp | 055xjx |
| | | in Local Memory | |
| | I I I
| [ag] | s; | Write (sj) to location ap ] 0571ixk
| | | in Local Memory | |
| ! I ! I

ar] | vj | Write (v;) to Local Memory | 075ixk

k i 1
J | | location (ay) | |
L | | | ]
Common Memory writes
| Result | Operand | Description | Machine |
| | | Instruction

I
] | | | |
I | I | |
| (exp) | sj | Write (s;) to Common Memory | 067ixx
| | | at location exp | [
[ I I I I
| (ag) | s | Write (sj) to Common Memory | 063ixk
| | | at location (ay) | |
I | I I I
| (ag.exp) | sj | Write (s;) to Common Memory | 065ixk
| | | at location (ayg)+exp | |
| I ! ! |
| (aj,ak) | s; | Write (sj) to Common Memory | 061ijk |
| | | at location (aj)+(ag) [ |
I | I I !
] (aj,ak) | vi | Write (vj) to Common Memory i 071ijk ]
| | | location (aj) incremented by | |
I I I (ag) | I
I ! ! I I
| (ak,Vj) | vi | Scatter (v;) to Common Memory [ 0731ijk |
| | | locations (ak)+(Vj) | |
[ I I | |

HR-2000 A-10



A.7.2 LOADS

Several instructions can be used to load data from memory into registers.

Local Memory reads

| Result | Operand | Description | Machine |
| | | | Instruction |
] | | ] }
| ! I I |
| aj | [exp] | Read from location exp in ] 044ixx |
i | | Local Memory to aj | |
I I I I ' I
| aj I [ag] | Read from location to aj in | 046ixk |
| | | Local Memory to aj | |
| ! I | I
| sj; | [exp] | Read from location exp in ] 054ixx |
] | | Local Memory to sj | |
I | I I I
| sj | [ag] | Read from location to ap in | 056 ixk |
| | | Local Memory to sj | |
| | l | I
| wvi | [ag] | Read from Local Memory ] 074ixk

j ] | location (ag) to vj ] |
I | l | 1
HR-2000 A-11



Common Memory reads

| Result | Operand | Description | Machine |
] | | | Instruction |
L ] | ] ]
I I I I I
| s; | (exp) | Read from Common Memory | 0661ixx |
| | | location exp to sj ] |
I I I ! I
| 8§ | (ag) | Read from Common Memory at | 062ixk |
1 | | location (ayg) to sj | |
| I | I I
| sj | (ag,exp) | Read from Common Memory at ] 064ixk |
| | | location (ag)+exp to sj | ]
I ! | I I
| s; | (aj,ag) | Read from Common Memory | 060ijk ]
| | | location (aj)+(ag) to sj | |
I I | I I
| vj | (aj,ak) | Read from Common Memory ] 070ijk |
] | ] location (aj) incremented ] |
| ! | by ag | I
. ! I I I
| vj | (ag,vj) | Gather from Common Memory | 072ijk |
| | | locations (ag)+(vj) to vj ] |
L I [ | i
Memory Range Error flags

| Result | Operand | Description | Machine |
| | | | Instruction |
| | ] ] |
I I I | |
| dri | | Disable halt on memory field | 035xx0 |
] | | range error | |
I I I ! |
| eri | | Enable halt on memory field | 035xx1 |
| | | range error | |
L I l | J

A.8 INTEGER ARITHMETIC OPERATION INSTRUCTIONS

Integer arithmetic operations obtain operands from registers and return
results to registers. No direct memory references are allowed.

HR-2000 A-12



A.8.1 INTEGER SUMS

| I I l |
| Result | Operand | Description ] Machine |
| | | | Instruction |
L | | | |
| | I | I
| aj ] aj+ag | Integer sum of (aj) and ] 020ijk |
I | | (ag) to aj I I
I I | | |
| sj | Sj+sk | Integer sum of (Sj) and | 104ijk |
I I | (sg) to sj | I
| | | I I
| wvi | Sj+Vk | Integer sums qf (Sj) and | 160ijk |
| | | (vg) to vj I |
| ! I | |
| wvj ] Vi+VE | Integer sums of (Vj) and | 161ijk |
I I | (vg) to vj I I
L | l | |
A.8.2 INTEGER DIFFERENCES

[ I I I |
| Result | Operand | Description | Machine |
i | | | Instruction |
| | | | |
I I | I |
| aj | aj-ag | Integer difference of | 021ijk |
: : : (aj) and (ag) to aj : :
| sj | sj-Sk | Integer difference of | 105ijk |
: : : (Sj) and (sg) to sj : :
| vj | Sj-Vk | Integer differences of | 162ijk ]
: : : (Sj) and (vg) to vj : :
| wvj | vj-vk | Integer differences of | 163ijk I
| | | (Vj) and (vg) to vj | |
L | l L J

HR-2000 A-13



A.8.3 INTEGER PRODUCTS

| I | I |
| Result | Operand | Description | Machine i
| | | | Instruction |
| | ] ] J
I I | I I
| aj i aj*ak | Integer product of (aj) | 022ijk i
| | | and (ap) to aj | i
l I | I ]
A.9 FLOATING-POINT ARITHMETIC INSTRUCTIONS

All floating-point arithmetic operations use registers as the source of
operands and return results to registers.

A.9.1 FLOATING-POINT SUMS

| I I I I
] Result | Operand | Description | Machine |
| | | | Instruction |
L | | ] B
I I I I I
| s; | Sj+fsk | Floating-point sum of | 120ijk |
I I | (sj) and (sg) to sj | |
I I I | I
| vy | Sj+ka | Floating-point sums of ] 170ijk |
| | ] (Sj) and (vg) to vj | ]
I | I | I
| vi | vj+fvg | Floating-point sums of | 171ijk i
| | ] (Vj) and (vg) to vj | ]
L | | I |

HR-2000 A-14




A.9.2 RECIPROCAL ITERATIONS

| Result | Operand | Description ] Machine |
i | | | Instruction |
] | | ] |
I I I | I
| sj | Sj*isk | Reciprocal iteration step, ] 1261ijk |
: } : 2-(sj)*(sg) to sj | :
I
| vj ] Vj*in | Reciprocal iteration step, | 156ijk ]
| I [ 2-(vj)*(vg) to sj | |
l | | I {
A.9.3 RECIPROCAL APPROXIMATIONS
| Result | Operand | Description | Machine |
| | | | Instruction |
L | | | ]
| ! | | | |
| sj | /th | Floating-point reciprocal | 132ijx |
| | | approximation of (Sj) to s; ] . |
I | I I |
| vi | /th | Floating-point reciprocal | 1661ixk ]
| | | approximation of (vg) to vj ] |
l | | | i
A.9.4 FLOATING-POINT DIFFERENCES
| Result | Operand | Description ] Machine |
| | | | Instruction I
L | | ] ]
I I I I |
| sj | Sj—fSk | Floating-point difference | 121ijk |
: : : of (Sj) and (sy) to sj | |
I I
| vi | Sj—ka | Floating-point difference | 172ijk |
: : : of (Sj) and (vg) to vj | ]
I |
| vi | Vj—ka | Floating-point difference | 173ijk |
] | | of (Vj) and (vg) to vj | |
L l l l 1

HR-2000



A.9.5 INTEGER TO FLOATING-POINT CONVERSIONS

of (Vj) and (vg) to vj

0 I | I l
| Result | Operand | Description | Machine |
| | | | Instruction |
| | | | ]
| T | | 1
| sj | fix,sy | Convert (sg) from floating- ] 122ixk |
[ | | point to integer and enter | |
| | | into sj | |
| | | | l
| vi | fix, vy | Integer form of floating- | 174ixk |
| | | point (vg) to vj | |
L l | 1 B
A.9.6 FLOATING-POINT TO INTEGER CONVERSIONS
[ I I | |
| Result | Operand | Description | Machine |
| ] | | Instruction |
L | | | |
| | | I I
| sj | £1t,sy | Convert (sj) from integer | 123ixk
| | | to floating-point and enter | |
1 | | into sj | |
| I ! | |
| vj | £1t,vg | Floating-point form of | 175ixk
| | | integer (vg) to vj | |
L | I | |
A.9.7 FLOATING-POINT PRODUCTS
| I I | j
| Result | Operand | Description | Machine }
| | / | Instruction |
| | | ] ]
I | | I I
| sj | Sj*fsk | Floating-point product ] 124ijk ]
: : : of (Sj) and (sgx) to sj | I
I I
| vi ] Sj*ka | Floating-point products | 154ijk |
: : : of (Sj) and (vy) to vj | |
! I
| vy ] Vj*ka | Floating-point products | 1551ijk |
I ! | I |
| | | |

- HR-2000 A-16



A.9.8 BSQUARE

ROOT ITERATIONS

I I I I o
| Result | Operand | Description | Machine A
| I | | Instruction |
L ] | ] o
| I | I I
| sj | Sj*qSk | Square root iteration of i 127ijk ]
| | I [3-(sj)*(sk)]1/2 to sj | |
I I I I I
| vy | Vj*qVk I Square root iteration of | 157ijk |
| I I [3-(vj)*(vg)1/2 to vj | I
L l I I i
T
A.9.9 SQUARE ROOT APPROXIMATIONS
| I o I |
| Result | Operand | Description | Machine |
! I I | Instruction |
| ] ] | ]
I I I I I
| sj | *gs 5 | Square root approximation of | 133ijx |
| | I (sj) to s; I I
I I | I I
]l ovj | *qvg | Square root approximation of i 167ixk |
I I I (vg) to vj I I
L | [ | |
A.9.10 FLOATING-POINT ERRORS
I | I
| Result | Operand | Description I Machine I
I I | | Instruction |
] ] | ] ]
N I I I I
| dafi | | Disable halt on floating-point | 035xx2 ]
I | | error | |
I | I I I
| efi | ] Enable halt on floating-point | 035xx3 |
1 | | error | I
L l | | |

HR-2000



A.10 LOGICAL OPERATION INSTRUCTIONS

A.10.1 [LOGICAL PRODUCTS

| Result | Operand | Description | Machine |
] | | | Instruction ]
i ] ] | ]
! I | I I
sj | ss&s | Logical product of (s4) and | 100ijk
I j*Sk Jj J
i : : (sx) to sj : | |
I ! I
| sj | #sk&Sj | Logical product of (Sj) and | 101ijk |
] | | complement of (si) to sj | |
I I I ! |
| vy | sq&v | Logical product of (s4) and ] 140ijk
i F*Vk J J

I I | (vg) to vj ! |
I I I l I
| v | v &g | Logical product of (Vj) and | 41ijk |
| I | (vg) to vj I I
L 1 | | o
A.10.2 LOGICAL SUMS

| Result | Operand | Description | Machine |
| | ] | Instruction |
L | | | |
I | I I I
| sj | Sj!sk | Logical sum of (Sj) and | 103ijk |
! : | (sp) to s; | !
I I ! |
| vi | Sj!vk | Logical sums of (Sj) and | 1441ijk |
| : : (vg) to vj | |
I I |
| vj | vilvk | Logical sums of (Vj) and | 145ijk |
I I I (vg) to vj I |
l | | | |

HR-2000 A-18



A.10.3 VECTOR STREAMING

] Result | Operand | Description | Machine |
| | | | Instruction |
| ] | ] J
I I ! I |
| vj | Sj!Vk&Vm | Transmit (s3) if vm bit=1; | 146ijk |
] ] | (vg) if vm bit=0 to vj | |
I | ! I I
| wvj ] Vj!vk&vm | Transmit (v4) if vm bit=1; | 147ijk |
| I | (vg) if vm bit=0 to v; | |
L | 1 | i
A.10.4 ©LOGICAL DIFFERENCES
| Result | Operand | Description | Machine
| | I | Instruction
L ] 1 ]
I I I I
| s; | ss\s | Logical difference of | 102ijk
i j\Sk J

| | ] (Sj) and (sy) to sj |

I I I !

4 | vi | Sj\Vk | Logical difference of | 142ijk
| | ] (Sj) and (vg) to vj |
| I I |
| wv; | vi\v | Logical difference of 143ijk

i j\Vk J

| | | (Vj) and (vg) to vj |
L | l l

L s s e ve— m— — ——— i i b omies e

HR-2000 A-19



A.10.5 VECTOR MASK

[ I I I |
| Result | Operand | Description | Machine |
| ] | | Instruction |
| | | | J
I I | I I
| vm | vg.z | Set vm from zero elements of | 030xxk |
I I I (vg) I I
I I I I I
| wvm | vx.n ] Set vm from nonzero elements | 031xxk |
| I | of (vg) I l
I I I I |
| vm | vg.P | Set vm from positive elements | 032xxk |
I I | of (vp) ! I
I I [ I I
| wvm | vg,m | Set vm from negative elements | 033xxk |
I I | of (vg) | I
L | l I J
A.10.6 COMPRESSED IOTA

| I I I I
| Result | Operand | Description | Machine ]
| | | | Instruction |
| | ] | B
| I I I I
| vji | ci,sjésg | Enter v; with compressed | 176ijk |
| | | iota (Sj) and (sy) | |
L | I | _I

HR-2000




A.11 BIT COUNT INSTRUCTIONS

vi

| Result | Operand | Description | Machine |
| | | | Instruction |
L 1 | ] |
I I I I I
| s | Psj | Population count of (Sj) to | 106170 |
I I I sj I |
| I | I I
| wvj | PV j | Population count of (Vj) to | 1641ij0 ]
| I I vi I !
I | I | I
| sj | as;j | Population count of parity of | 106ij1 |
I I | (sj) to s; I I
I I I I I
| vi | qvj | Population count of parity of | 164ij1 |
I I | (vj) to v; I I
| I I I I
| sj; | 255 | Leading zero count of (Sj) to | 107ijx |
| | | sj I I
| | I | I
| vi j zvj | Leading zero count of (Vj) to ] 165ijx |
| I ! I I
[ | | l |

HR-2000



A.12 SHIFT INSTRUCTIONS

A.12.1 LEFT SHIFTS

| Result | Operand | Description | Machine |
| | | | Instruction |
L ] ] | il
| | | | T
| sj | sjcexp | Shift (Sj) left exp=64-jk | 110ijk |
| | | places to sj | |
I I | I I
| vj | vjcag | Shift (Vj) left (ag) ] 150ijk |
| | | bits with zero fill. Results | |
I | | to wvj l I
I | I I I
| sj | sjrsj<ag | Shift (sj and Sj) left | 112ijk ]
] | | ag places to sj | |
I I I I !
| vi | vj.vj<ag | Double shift (Vj) left | 152ijk |
] | | ag places to vj | |
L I | I il
A.12.2 RIGHT SHIFTS

| Result | Operand | Description | Machine ]
| ] | | Instruction |
L | | | i
I [ I I I
| sj | sj>exp | Shift (sj) right exp=jk | 111ijk |
| | | places to sj | ]
I I I I [
| vj | vjrag | Shift (vj) right (ag) | 151ijk [
| ] | bits with zero fill. Results | [
| | | to vj; I |
I I I I !
| sj | sj.sj>ag | Shift (Sj and sj) right | 113ijk |
] | | ap places to sj |

k i
! ! I I I
| wvi | vi.vjirag | Double shift (Vj) right | 1531ijk |
| | | ajx places to vy ]
k i
L | I | |

HR-2000 A-22



READER COMMENT FORM

CRAY-2 Computer System Functional Description HR=-2000

Your comments help us to improve the quality and usefulness of our publications, Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME
JOB TITLE

> CERANY

ADDRESS
CITy STATE zZiP




iy e i st e o e e, e i i, S S S o S MY St §

Attention:
PUBLICATIONS

BUSINESS REPLY CARD

FIRST CLASS PERMIT NO 6184 ST PAUL MN

POSTAGE WILL BE PAID BY ADDRESSEE

R AY

2520 Pilot Knob Road
Suite 350
Mendota Heights, MN 55120

US.A

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

STAPLE

ANIT SIHL ONOTV 1N




READER COMMENT FORM

CRAY=-2 Computer System Functional Description HR=-~2000

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME

JOB TITLE -
FIRM =AY

ADDRESS
CiITY STATE ZIP.




BUSINESS REPLY CARD

FIRST CLASS PERMIT NO 6184 ST PALIL. MN

PUBLICATIONS

POSTAGE WILL BE PAID BY ADDRESSEE

=AY

2520 Pilot Knob Road
Suite 350
Mendota Heights, MN 55120

US.A.

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

————e e

STAPLE

AN SIHL DNOV 1NO

—



introducing the CRAY-2
series of computer systems

The CRAY-2 series of computer systems sets the
standard for the next generation of supercomputers.
Each CRAY-2 model is characterized by a large
common memory, two or four background
processors, a 4.1-nanosecond clock cycle, and
liquid immersion cooling. The CRAY-2 systems
offer effective throughput up to twelve times that
of the CRAY-1 supercomputer and run an
operating system based on the increasingly
popular UNIX operating system.

The distinctive CRAY-2 computer systems use the
most advanced technologies available. The compact
mainframe is immersed in a fluorocarbon liquid

that dissipates the heat generated by the densely

packed electronic components. The logic and
memory circuits are contained in compact eight-
layer, three-dimensional modules. Both logic and
memory circuits are constructed of high-density,
high-speed silicon chips.

The original 256-million-word CRAY-2 computer
system has been upgraded with a faster dynamic
random-access memory (DRAM) chip. An even
faster memory CRAY-2 model combines four
processors with 128 million words of static
random-access memory (SRAM). The faster chip
cycle time and elimination of the need for
refreshing memory improves typical throughput
on this model by 15 to 25 percent over




comparable DRAM CRAY.2 systems. For users
requiring less fotal throughput, two-processor
CRAY-2 systems are available with 64 or 128
million words of SRAM common memory.

The CRAY-2 mainframe contains two or four
independent background processors, each more
powerful than a CRAY-1 supercomputer. Featuring
a 4.1-nanosecond clock cycle time — faster than
any other computer system available — each of
these processors offers exceptional scalar and
vector processing capabilities. The background
processors can operate independently on
separate jobs or concurrently on a single
problem. The high-speed local memory integral
to each background processor is available for
temporary storage of vector and scalar data.

Common memory is one of the most important
features of the CRAY-2 computer systems. It
consists of up to 256 million 64-bit words,
randomly accessible from any of the background
processors and from any of the high-speed and
common data channels. Common memory is
arranged in 64 or 128 interleaved banks, divided
evenly among four quadrants. All memory access
is performed automatically by the hardware. Any
user may use all or part of this memory. In
conventional memory-limited computer systems,
|/O wait times for large problems that use out-of-
memory storage run into hours. With the large
common memory of the CRAY-2 systems, many
of these problems can be handled in a fraction
of the time.

Complementing and balancing CRAY-2 computing
speeds are the DD-49 disk drives, high-density
(1200-Mbyte) magnetic storage devices. The
optional Cray Tape Controller (CTC) enables a
CRAY-2 system to interconnect with one or more
IBM 3480 Magnetic Tape Subsystems. In addition,
hardware and software interface support allows
CRAY-2 systems to be connected to a wide variety
of front-end systems and external networks.

Control of network access equipment and the
high-speed disk drives is integral to the CRAY-2
mainframe hardware. A single foreground
processor coordinates the data flow between the
system common memory and all external devices

Sample CRAY-2 four-p

Network adapter

across high-speed I/O channels. The synchronous
operation of the foreground processor with the
background processors and the external devices
provides a significant increase in data throughput.

To complement the CRAY-2 architecture, Cray
Research has developed UNICOS, an interactive
operating system based on AT&T's UNIX System V.
UNICQOS supports two automatic vectorizing Fortran
compilers: CFT2, which is based on the field-proven
Cray Research Fortran compiler (CFT); and CFT77,
which represents the leading edge in compiler
development. In addition, UNICOS supports C and
Pascal compilers and a growing range of scientific
and engineering applications on CRAY-2 systems.

The CRAY-2 series of computer systems repre-
sents a major advance in large-scale computing. The
combination of two or four high-speed background
processors, a high-speed local memory, a very
large common memory, extremely powerful 1/0O,
and a comprehensive software product offers
unsurpassed and balanced performance for
today’s supercomputer users. The CRAY-2
computer systems...setting the standard for the
next generation of supercomputers.

= FRANY

CRAY, CRAY-1, and UNICOS are registered trademarks and CFT, CFT2, CFT77, and CRAY-2 are trademarks of Cray Research, Inc. The UNICOS operating
system is derived from the AT&T UNIX System V operating system. UNICOS is also based, in part, on the Fourth Berkeley Software Distribution under license
from The Regents of the University of California. UNIX is a registered trademark of AT&T.

CCMP-4004C

©7/87 Cray Research, Inc.



Memory

Processors and Memory

Memory Addressing

32

There are 32 absolute address bits, but only 29 address lines are carried onto the
backplane. Absolute address bits O through 2 select the memory section; bits 3
through 5 select the subsection; bits 6 through 9 select the bank; and bits 10
through 31 select the chip address. Figure 14 shows the four memory address
fields. Table 6 lists memory addressing information forthe2 X 2,4 X 4,and 8 X 8
systems. Refer again to Figure 8 through Figure 11 for the memory sections on
each memory module.

Xd

3
P

L
- ( .l;"}.' .
Internal to
Memory Module Address (29 bits) Processor Module
A A
4 N/ N\
Address 31 10 9 8 7 6 5 4 3 2 1 0
Chip Address ) Bank ~ Subsection Section. .~

NOTE: Subsection bits 4.and 5 are not used in a 2 X 2 system. -~

Rt

Figure 14. Memory Address Bits* >~ »

Table 6. Memory Addressing

Backplane Memory Memory
Configuration Sections Module
2X2 0,2,4,6 0

1,3,5,7 1
4X4 0,4 0
1,5 1
2,6 2
3,7 3
8X8 0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7

The memory addressing scheme uses a rotating priority through the 8 sections
of memory with 2-section spacing between the slots. Each slot has highest
priority to 1 memory section each CP. This is called the slot’s namural priority.
A natural slot priority that is not in use may be borrowed by another slot. A

Cray Research Private HMM-118-A

4
PR



Processors and Memory Memory

Memory Paths

Memory Ports

HMM-118-A

borrowing priority exists for the three non-natural slots. /O operations are
unslotted and may use any available slot. /O priority is configured from lowest
to highest priority, depending on system requirements. All read and write
requests to memory are handled on a slot basis. Ports A and B of CPU 0 share
slot 0; ports A and B of CPU 1 share slot 1; ports A and B of CPU 2 share slot
2; and ports A and B of CPU 3 share slot 3, etc. Refer to the CRAY J90 Series
System Programmer Reference Manual, Cray Research publication number

CSM-0301-000, for more information on memory addressing.

Each processor module has an independent path into each memory section.
Figure 15 shows the central memory architecture. The 4 CPUs and the /O on a
processor module share these eight paths. Each of the eight paths is capable of
sending one request to memory per CP and receiving read data from memory at
the same rate. Each CPU can have overlapping references in different sections
without restrictions. Simultaneous references from a processor module to the
same section are not permitted because only one physical path into each memory
section exists for requests and write data.

A rotating priority scheme gives the 4 CPUs on a processor module equal access
to each section of memory. All memory references for a CPU are sent to each
memory section in the proper order. However, no order is guaranteed for memory
references between the various CPUs in the system. Each memory section buffers
the requests as required by bank busy si gnals and requires activity from all CPUs
in the system. A memory section guarantees order for a request from a single
CPU but not for requests between CPUs.

Each CPU has two ports: port A and port B. Each port has a specific function
that is defined jointly by the read mode bits and the port bits in the exchange
package. Ports A and B are both read and write ports, but they allow only one
write operation to be active at a time. However, both ports may process read
operations simultaneously. Also, a read operation may occur on one port while
a write operation occurs on the other port, if the bidirectional mode bit (BDM)
is set in the exchange package. A third port, port D, is used for I/O and instruction
fetch operations.

Cray Research Private 33



9ie saotad 3aning

P I Ma

).

R A Wy I

i m;l,x AR N,. S:\u

Y

*2 Aeap 1osssoorxd-1noy © 104 3

| S
MAU)’ LJJ.\

*5934Ag UT 238X I9IsueI) paurrisns/sailg ur A3toeded :aae ssanbry osta ]
*uoT3IRINbrIUOD uo Butpuadap 3ITAO O 10 ‘¢ ‘G z= ybry Ax8A {1Tquose=ybIy f{3TqWOS=MOT :Sspaads (auueyd a
*@gss Iou aberols sSPW IOF JOU ‘SITUn UOTIRIIDBTIIIAI ‘nNad ‘I0irisuab-ryojow 103 Iybrom
pue 2zTS 9pnNIOUT IOU SI0Q "IA0OQE pUP QOZT ST 203 SOI puw aueIjutew {0Q0[ ST pue ¥i Afuo awexjutew 3yhram pue 321§ o)
' . *aaoqe se uotieanbryuoo 103 19MO4 ‘g
*papnIouT 3Iou gss ‘abeyols ssew "$gg uy
18W UT {Axowaw IIIINQG MW [ pue S10559001d OM3) SOT WNWTUTW ‘AIoWwSW WNWIXPW Y3ITM Japow I0J ST 20Tag 'Y
o S330N
{1088890014g
punoxbaxogd)
§9X ON SOOI
nJdIA pug
Xapur 23071
sgaaduo) ssa1dwo)
X93310S 1933008
/asyien /isyien SUOTIONIISUT MIN
sd gug/aoz" 1 sdawy/awo09sdawy /gwo09  sdewy/awo09  sdgWb/EW009 {3) osTQg
ybty Axan.z ybty Axaa 1 . - {q)
‘ybty ¢ ybty ¢ ybry g bty ¢ paads sweIyuTeW UT
‘MOT b 9TqTXaT3 MoT b 'MOT ¥ 'MOT 71 Mot Z1 stauueyd § XeW
{93eIS5URITY
a9 0z) -
otTweudp oTweulp otweulp otweulp otuweulp
SOW 296¢ SOW ¥tr9 SOW dv9 SOW Ab9 SOW M¥9
MW 871 ON My Z¢-8 MW ZE-8 My ZE-8 MW ZE-8 ass
SL'9 Lz GL'9 SL"9 GL°9-G2"°% §Z'S () {suo3l) 3ubrom
oyl v ov1 oyt i 0RT/0071 001 (D) @azts
061 081 081-GLT SL 091 061 (g} (¥AX) x9MmO4g
007 0Z£-00¢ 0ZI~-511 14 9¢g 92 sdooT 117
ous 0081 ocy 0G1-0€1 091-0% 1 091~-0¢v T SdOTAW XeW
8-9 8 S-¢ G6° 1 T ¥1 :3duvuxoyxsd
$0I Teabazur SOI SOI SOI a0 €£0nda £'Z 00Q 10I3uU0> aHeI0IS SSEY
r9 821 zZE 91 91 91 syjueq Axowaw Xew
8 v9=T¢ 967 b v b 1 (MW) Axowaw xeW
¢PTIYOITRY
‘eroxolon *prIYLaTRd ns3ting+
‘nsating ‘e70I03I0W 'eT0I010W *BTOI0ION
souuT sowuy '‘nsyting nsytling ‘pTTYDITRY 'pPTTYDITRS IBYCW
OT3IBIS SUGE
5u §¢ SU OZ1=1# (o2 % SS SE 112 (su)awrl SE3IDOVY
EPIOM 9T
TOFTXAY =
Azowsw teDOT s
213E18 91 yoed xoed yoed
SOW Mp9=1# 3er3 utd §( or3els 3etry urd g1 2aery utd 9f
da70I TXN91 SOW ¥96¢ d9I03 [XMF SOW IXN91 447103 1XAb dgTOd TXNT sdryo Axowau
=14 ’
u |4 ¥ 4 . T T 1 . 81088300xd 1§
’ 0°6-5°8 oA / S°6 1021 A gzt {su) potrad 320710
) aTnpou
1e300 12300 a1dnapenb arqnop aTqnop aTqnop ‘/sxaker o1boT
*BRTOI0IOW *PTOJO3IO0N "RTOIOIOW *B1OI030W *BTOIO0ION
‘pPITyoxTEy 'pPITYOITRY ‘PITYDITRY ‘prIyoaTey ‘pITYOITREY Iayew
sd 059 dW-X se sd 0§9 sd 0GL sd o058 sd 0s8 Keysp a3jen
(xoed 3e13
{utd 91) utd 91 103) .
aijeb 97 dw-X 8e 103 @3eb g1 93vbh % p/g ?3eb % p/s aieb % v/5 sdtyp otbo
st z°¢et 611 S*L €1 8 (¥) apTnn 807ad
Y (192) bdW-X z TdW-X W ST 2'a’vr WYIX/FHALYRS
ve ve Z8 Z8 08 9L

83 - 3%

ﬂ*JmU

T )

‘7

!




CRAY - 2

SYSTEM OVERVIEW

COMMERCIAL IN CONFIDENCE




Introduction

Larger Semiconductor Memory
Multiprocessors
Integrated Foreground Processor

Liquid Immersion Cooling




UNIX SYSTEM V PORT TO C-1

3/16/84
e UNIX O.S. | . .
Lines %Changed Language
kernel 6000 5 C |
drivers 1500 100 C
machine dependent 1800 100 CAL
configuration 200 5 ,
monitor 1500 100 CAL
definitions, tables 2800 5 - C

e UNIX libraries ported and tested, few changes
* UNIX utilities. >80 of 200+ ported, few changes

® Features of System V not!,impl'emente'd

| ~-shared memory (no hardware support)
-semaphores (not required yet, complex code)_
-set terminal pai;ameters

© Fortran compiler and object code execution
not yet available |

e C compiler not yet available




CRAY-2 Software Overview

UNIX Based Operating System

- March ’83 decision for UNIX on CRAY-2
- June 83 System V Source obtained
- Sept. '83 UNIX Kernel demonstrated

on CRAY-1

" CFT FORTRAN Compiler

- Conversion from CRAY-1 CAL
- NFT Compiler to follow

’C’ Compiler
- Based on Bell Labs CRAY-1 Compiler

CAL Assembler

- Based on CRAY——i CALsyntax
- CAL being rewritten

Multitasking

- same FORTRAN interface as
X-MP/COS




" CRAY 2 UNIX} Enhancements

I/O Performance

Multiprocessing

Network Interface

+ UNIX is a trademark of A.T&T Bell
Laboratories




'I/O Performance Enhancements

CRAY-2 Track I/O

- zero latency; read /write next available

sector
- managed by foreground processor,
reduced interrupt count

LoW System Overhead

- favorable timing of system calls versus

COS




I/0 P%rformance Enhancements

Devmg Overflow
- overﬁow within cluster: group of one or

“more drives
- single set of inodes within cluster with

| redundancy |
- cluster is mountable, dismountable

Striping
- flexible striping with small number of
disks, no additional checksums
- number of striped disks requested on
open
- stripe swap file when possible

Partitioning
- a physical disk unit may be d1V1ded
into partitions, each treated as a

logical disk unit




I/0 Performance Enhancements

Improved Buffering |
- take advantage of UNIX system

buffering
- track and sector size system buffer pool

- unbuffered "raw” I/O direct to user
buffer or array

Allocation Improvements for Large
Files

- track size allocation over 8 sectors
- attempt contiguous allocation

- bit map for available tracks
- free list for available sectors




I/O Performance Enhancements

Asynchronous System 1/O Calls
- reada() and writea()
- system buffered and unbuffered "raw”
1/0, selected on open call |
- notification via status word and

optional signal
- for performance and multi-tasking

Improved Recovery
- shadowing of directories, inodes,

indirect blocks on a cluster




- Multiprocessing Features

Multiprogramming
- independent processes on multlple

CPUs
- scheduling for large memory with slow

disks

Multithreaded UNIX kernel
- use semaphore flag reserved for kernel
- locks on shared tables, protected code

sequences
- increase parallelism as needed for low

overhead as number of CPUs
increase




Multiprocessing Features

Multitasking

- FORTRAN library interface
compatible with COS on XMP:
locks, events, tasks |

- supported by new tfork system call to
assign additional logical processors

- multitasking library manages and
schedules user tasks

- heap memory manager for dynamic
user requests and task stack
“-management

- I1/0 library to take advantage of

asynchronous I/O calls and signals




Multiprocessing Features

Fork

- create related concurrent process -

- executes a copy of parent’s memory
- cft &

Pipes
- communication mechanism between
two processes
- programmed as read/write with I/O
redirection thru memory
- prep|crunch|post




Network Interface

NSC Hyperchannelf
- CRAY 2 Hardware Interface to A130

Adaptor

Protocol Independence
File Transfer

- Terminal Messages
- "'Wo.rkstations
- Terminal Concentrators

Berkeley 4.2 Implementation?

TCP /IP Protocol?

+ Hyperchannel is a trademark of
Network Systems Corporation




Future Plans - Operating System

Redesign I/O for Performance
- Efficient, Fast FORTRAN 1/0

- Improved allocation of Large Datasets,
~ Device Overflow

Support Multiprocessors

- Multitasking User Processes
- Multiprocessing Operating System

Improved Batch Capability with
Recovery

Network Interface

Operational Support

- Systemlog, Accounting

- Performance Monitoring
- Security

- Operator Control

Recovery, Reliability




Hardware Design

320 Modules 4 x 8 x 1”

750 IC’s per Module

- 240,000 IC’s in System (75,000 Memory)
IC’s are in 8 x 8 x 12 Arrays

8 PC Boards per Module with X, Y, and

Z. Connections
288 .Pin ’.Connector
14 Columns, 24 Modules per Column
Liquid flow 1 inch per Second
| Power 180 Kilowatts

45” high x 53” diameter




Foreground Processor

Overall System Supervision
System Deadstart

Peripheral Controller Interface

- DD29 Disk |
- 6Mb CRAY-1 Channel
- HYPERchannel Adaptor Interface

32 Bit Processor

- A and B Register 32 Bit
- Local Data Memory 4096 32 bit words
- Instruction Memory 32K Bytes

- Integer Functional Unit 32 Bit Mode

Four Communication Channels

- 4 Gigabits/Second Each

- Capacity of 40 DD-29 (200 Gigabits)

- Link Foreground and Background
Processors and Controllers




Background Processor

4 CPUs
| 4 Nanosecond Clock Rate
- Floating Point 3 x CRAY 1

Transit Time in Functional Units 2/3
CRAY 1

Local Memory replaces B & T Registers

Hardware Gather/ Scatter (1/4 Clock
Perlods)

Hardware Square Root Approximation




Local Memory

16384 Words

4 Clock Period Access

Replace B & T

Hold Scalar Operands during
Computation

A, S, and V Register Access




Common Memory

64 Megaword MOS, upgradable to 256
Megaword |

128 Banks
- 2 Meg/Bank: 256 Mwd
- 1/2 Meg/Bank: 64 Mwd

Shared by Foreground and Background
Processors and Controllers

Total Memory Bandwidth 64 Gigabits

4 Common Memory Access Ports used

for:
- Background Processor Operand
Request | |
- Background Processor Instruction
Fetch |
- Foreground Processor Transfer
Request




CRAY-2 Software Overview

UNIX Based Operating System

- March 83 decision for UNIX on CRAY-2
- June '83 System V Source obtained
- Sept. '83 UNIX Kernel demonstrated

on CRAY-1

- CFT FORTRAN Compiler

- Conversion from CRAY-1 CAL
- - NFT Compiler to follow

’C’ Compiler
- Based on Bell Labs CRAY-1 Compiler

CAL Assembler

- Based on CRAY-1 CAL syntax
- CAL being rewritten |

Multitasking

- same FORTRAN interface as
X-MP/COS




CRAY 2 UNIX} Enhancements

1/O Performance

Multiprocessing

Network Interface

1" UNIX is a trademark of AT&T Bell

Laboratories




I/O Performance Enhancements

CRAY-2 Track I/O

- zero latency; read /write next available

sector |
- managed by foreground processor,
- reduced interrupt count

LoW System Overhead

- - favorable timing of system calls versus

COS




I/O Performance Enhancements

Device Overflow |
- overflow within cluster: group of one or
more drives
- single set of inodes within cluster with
redundancy
- cluster is mountable, dismountable

Striping
- flexible striping with small number of
| disks, no additional checksums
- number of striped disks requested on
open -
- stripe swap file when possible

Partitioning
- a physical disk unit may be d1v1ded

into partitions, each treated as a
logical disk unit




I/O Performance Enhancements

File Placement and Striping

cluster

1111 full width striping

1109 two half width striped files
- 0011

1000 four placed files
0100
0010
0001

0000 system placement; non-striped




I/O Performance Enhancements

Partitions and Clusters

swap

u§er

I ' l
privatel - private2




I/0O Performance Enhancements

Improved Buflering
- take advantage of UNIX system -

buffering
- track and sector size system buffer pool
- - unbuffered "raw” I/O direct to user

buffer or array

Allocation Improvements for Large
Files
- track size allocation over 8 sectors
- attempt contiguous allocation
- bit map for available tracks
- free list for available sectors




I/O Performance Enhancements

Asynchronous System 1/0 Calls

- reada() and writea()

- system buffered and unbuffered "raw”
1/0, selected on open call

- notification via status word and
optional signal

- for performance and multi-tasking

Improved Recovery
- shadowing of directories, inodes,
"‘indirect blocks on a cluster




Multiprocessing Features

Multitasking

- FORTRAN library interface

compatible with COS on XMP:
| locks, events, tasks

- supported by new tfork system call to
assign additional logical processors

- multitasking library manages and
schedules user tasks

- heap memory manager for dynamic
user requests and task stack

" management |

- I/0O library to take advantage of

asynchronous I/O calls and signals




Multiprocessing Features

Multiprogramming
- independent processes on multlple

CPUs

- scheduling for large memory with slow

disks

Multithreaded UNIX kernel
- use semaphore flag reserved for kernel
- locks on shared tables, protected code
~_.sequences
- increase parallelism as needed for low
overhead as number of CPUS

increase




Multiprocessing Features

Fork

- create related concurrent process -
- executes a copy of parent’s memory

-cft &

Pipes
- communication mechanism between
| two processes
- programmed as read/write with I/O
redirection thru memory
- prep|crunch|post




Networik Interface

NSC Hyperchannelf
- CRAY 2 Hardware Interface to A13O

Adaptor

Protocol Independence'
File Transfer

Terminal Messages
| - Workstations
- Terminal Concentrators -

Berkeley 4.2 Implementation?

TCP/IP Protocol?

T Hyperchannel is a trademark of
Network Systems Corporation




e
T

=

o
o
R

e

.
.

=
-

%

.

o

.

o

-
,545"'4%

h

.

=

=

e
=
2

S
-
-

,
.
.

—

s

o

ﬁ}f”f&d

-
e
.
o

-
.

.

o

.

e
2

o

S

.

&

-

";'2"
S

-
.

Sk

o
2

X
e “’;ﬂﬁg."‘?\ﬁ‘z

el
V*sa’s%‘

-
-

«%ﬁ%‘,‘

o

o

.
e
.
-
S

L

e

=

e
-

-
.
e
-
s

e
o
-

e
S

o

e

o
i

e

|

2‘?}5

Lo

L
e
.

i

-

.
2
e
-
.

=

s

o
-
.

i

S

S

s
e

S

i
=

o
RO

o
-

o

.
-

s

-

-
i
L

S

SREsGNT
‘ﬁ:{z‘ 3 SEa
B na
SRl i

o

e
fomian
-

=

o

-
S

.

e

o
.
.

o
o
-

-

i

-

-

2

o

i
s

e

=

.
.

=

ot
G
e

-

e

i

-
o

Sk
Sie

o
e
o

Lt

¥

.
S
<

.

e




Cray Research’s mission is to lead in the development and marketing of
high-performance systems that make a unique contribution to the markets
they serve. For close to a decade, Cray Research has been the industry
ieader in large-scale computer systems. Today, the majority of
supercomputers installed worldwide are Cray systems. These systems are
used in advanced research laboratories around the world and have gained
strong acceptance in diverse industrial environments. No other
manufacturer has Cray Research’s breadth of success and experience in
supercomputer development.

The company’s initial product, the CRAY-1 Computer System, was first
installed in 1976. The CRAY-1 quickly established itself as the standard of
value for large-scale computers and was soon recognized as the first
commercially successful vector processor. For some time previously, the
potential advantages of vector processing had been understood, but
effective practical implementation had eluded computer architects. The
CRAY-1 broke that barrier, and today vectorization techniques are used
commonly by scientists and engineers in a wide variety of disciplines.

With its significant innovations in architecture and technology, the
CRAY-2 Computer System sets the standard for the next generation of
supercomputers. The CRAY-2 design allows many types of users to solve
problems that cannot be solved with any other computers. The CRAY-2
provides an order of magnitude increase in performance over the CRAY-1
at an attractive price/performance ratio.



The CRAY-2 Computer System sets the standard
for the next generation of supercomputers. it is
characterized by a large Common Memory (256
million 64-bit words), four Background Processors,
a clock cycle of 4.1 nanoseconds (4.1 billionths of a
second) and liquid immersion cooling. It offers
effective throughput six to twelve times that of the
CRAY-1 and runs an operating system based on the
increasingly popular UNIX™ operating system.

The CRAY-2 Computer System uses the most
advanced technology available. The compact
mainframe is immersed in a fluorocarbon liquid that
dissipates the heat generated on the densely
packed electronic components. The logic and
memory circuits are contained in eight-layer,
three-dimensional modules. The large Common
Memory is constructed of the most dense memory
chips available, and the logic circuits are
constructed from the fastest silicon chips available.

The CRAY-2 mainframe contains four independent
Background Processors, each more powerful than a
CRAY-1 computer. Featuring a clock cycle time of
4.1 nanoseconds — faster than any other computer
system available — each of these processors offers
exceptional scalar and vector processing
capabilities. The four Background Processors can
operate independently on separate jobs or
concurrently on a single problem. The very
high-speed Local Memory integral to each
Background Processor is available for temporary
storage of vector and scalar data.

Common Memory is one of the most important
features of the CRAY-2. It consists of 256 million
64-bit words randomly accessible from any of the
four Background Processors and from any of the
high-speed and common data channels. The
memory is arranged in four quadrants with 128
interleaved banks. Allmemory access is performed
automatically by the hardware. Any user may use all
or part of this memory.

In conventional memory-fimited computer systems,
1/0 wait times for large problems that use
out-of-memory storage run into hours. With the
large Common-Memory of the CRAY-2, many of
these probiems become CPU-bound.

Introducing the CRAY-2
| Compyter System




Control of network access equipment and the
high-speed disk drives is integral to the CRAY-2
mainframe hardware. A single Foreground
Processor coordinates the data flow between the
system Common Memory and all external devices
across four high-speed /O channels. The
synchronous operation of the Foreground
Processor with the four Background Processors
and the external devices provides a significant
increase in data throughput.

To complement the new CRAY-2 architecture, Cray
Research has developed an interactive operating
system based on AT&T's UNIX System V. The
CRAY-2 Operating System is supported by a
FORTRAN compiler based on the proven Cray
Research FORTRAN compiler, CFT.

The CRAY-2 Computer System represents a major
advance inlarge-scale computing. The
combination of four high-speed Background
Processors, a high-speed Local Memory, a huge
Common Memory, an extremely powerful 1/O
capability and a comprehensive software product
offers unsurpassed and balanced performance for
the user.

 Features of the CRAY-2

O Extremely large directly addressable Common

me availabl

)

omputer




iew

CRAY

2 systemoverv

o

e

1
=

o

-
2
-

=

e

e

| =

=

-
&

- e
G

-
-
i =

-
o
-

-

.
e

B

Cray Research, Inc.




Physical characteristics

The CRAY-2 mainframe is elegant in appearance
as well as in architecture. The memory, computer
logic and DC power supplies are integrated into a
compact mainframe composed of 14 vertical
columns arranged in a 300°arc.

The upper part of each column contains a stack of
24 modules and the lower part contains power
supplies for the system. Total cabinet height,
including the power supplies, is 45 inches, and the
diameter of the mainframe is 53 inches. Thus, the
“footprint” of the mainframe is a mere 16 square
feet of floor space.

Aninert fluorocarbon liquid circulates in the
mainframe cabinet in direct contact with the
integrated circuit packages. This liquid immersion
cooling technology altows for the small size of the
CRAY-2 mainframe and is thus largely responsible
for the high computation rates.




7 "
=
S
o
e
S
e
R

Cray Research

s INC.




Architecture and design

In addition to the cooling technology, the CRAY-2's
extremely high processing rates are achieved by a
balanced integration of scalar and vector
capabilities and a large Common Memory ina
muitiprocessing environment.

The significant architectural components of the
CRAY-2 Computer System include four identical
Background Processors, 256 million 64-bit words
of Common Memory, a Foreground Processor and a
maintenance controt console.

Each of the four identical Background Processors
contains registers and functional units to perform
both vector and scalar operations. The single
Foreground Processor supervises the four
Background Processors, while the large Common
Memory complements the processors and provides
architectural balance, thus assuring extremely high
throughput rates.

Onsite maintenance is possible via the
maintenance control console.

Background Processors

Each Background Processor consists of a
computation section, a control sectionand a
high-speed Local Memory. The computation
section performs arithmetic and logical
calculations. These operations and the other
functions of a Background Processor are
coordinated through the control section. Local
Memory is used to store temporarily scalar and
vector data during computations. Each Local
Memory is 16,384 64-bit words.

Control and data paths for one Background
Processor are shown in the block diagram
(opposite page).

Computation section

The computation section contains registers and
functional units that operate together to execute a
program of instructions stored in memory.




CRAY-2 system organization

Floating point tunctional units

Foreground

Vectorregisters

R

ﬁ;’?‘"f";ﬁ
2 2

@v RN
/ peeteeen
@%&" e
o
ﬁ By o %\\ : Vector function:
L ] -
g 50 s »@ g}w‘:‘“w@
e B
. vk o
M i i Ak
Vector control
Scalar registers
Scalar functional units
SiSj Sk Si 5j Sk
Si Si

Address registers

Vactor control

----------- R

T

External devices




Local Memory

Each Background Processor contains 16,384
64-bit words of Local Memory. Local Memory is
treated as a register file to hold scalar operands
during computation. It may also be used for
temporary storage of vector segments where these
segments are used more than once ina
computation in the vector registers. The access
time for Local Memory is four clock periods, and
accesses can overlap accesses to Common
Memory. This Local Memory replaces the B and T
registers on the CRAY-1 and is readily available for
user jobs. One application is for small matrices.

Control section ' «
Each Background Processor contains an identical
independent control section of registers and
instruction buffers for instruction issue and control.

Each Background Processor has a 64-bit real-time
clock. These clocks and the Foreground Processor
real-time clock are synchronized at system start-up
and are advanced by one count in each clock
period. :

Background Processor intercommunication
Synchronization of two or more Background
Processors cooperating on a single job is achieved
through use of one of the eight Semaphore flags
shared by the Background Processors. These flags
are one-bit registers providing interlocks for
common access to shared memory fields. A
Background Processor is-assigned access to one
Semaphore flag by a field in the Status register. The
Background Processor has instructions to testand
branch, set and clear a Semaphore flag.




Common Memory

One of the primary technological advantages of the
CRAY-2 Computer System is its extremely large
directly addressable Common Memory. Featuring
268,435,456 words, this Common Memory is
significantly larger than that offered on any other
commercially available computer system. It allows
the individual user to run programs that would be
impossible to run on any other system. It also
enhances multiprogramming by allowing an
exponential increase in the number of jobs that can
reside concurrently in memory (that is, that can be
multiprogrammed).

Common Memory is arranged in four quadrants of
32 banks each, for a total of 128 banks. A word of
memory consists of 64 data bits and 8 error
correction bits (SECDED). This memory is shared
by the Foreground Processor, Background
Processors and peripheral equipment controllers.
Each bank of memory has an independent data
path to each of the four Common Memory ports.
Each bi-directional Common Memory port
connects to a Background Processor and a
foreground communications channel.

Total memory bandwidth'is 64 gigabits or 1 billion
words per second.

Foreground Processor and 1/0 section

The Foreground Processor supervises overall
system activity among the Foreground Processor,
Background Processors, Common Memory and
peripheral controllers. System communication
occurs through four high-speed synchronous data
channels. ‘ :

Firmware control programs for normal system
operation and a set of diagnostic routines for v
system maintenance are integral to the Foreground
Processor.

Control circuitry for external devices is also located
within the CRAY-2 mainframe.

Foreground communication channels

The Foreground Processor is connected to four
4-gigabit communication channels. These
channels link the Background Processors,
Foreground Processor, peripheral controllers and
Common Memory. Each channel connects one
Background Processor, one group of peripheral
controllers, one Common Memory port and the
Foreground Processor. Data traffic travels directly
between controllers and Common Memory.

: Cray 'Reseqrch, l‘n“c.



CRAY-2 technology

10

Technological innovations on the CRAY-2 include
the use of liquid immersion cooling and the
eight-layer, three-dimensional modules.

Liquid immersion cooling

Effective cooling technigues are central to the
design of high-speed computational systems.
Densely packed components result in shorter
signal paths, thus contributing to higher speeds.
Traditionally, the tradeoff has been lower reliability
due to increased operating temperatures, but this is
no longer a limitation. The liquid immersion cooling
technology used by the CRAY-2 is a breakthrough
in the design of cooling systems for large-scale
computers. It places the cooling medium in direct
contact with the components to be cooled, thus
efficiently reducing and stabilizing the operating
temperature and increasing system reliability.

The CRAY-2 mainframe operates in a cabinret filled
with a colorless, odorless, inert fluorocarbon fluid.
The fluid is nontoxic and nonflammable, and has
high dielectric (insulating) properties. it also has
high thermal stability and outstanding heat transfer
properties. The coolant flows through the module
circuit boards at a velocity of one inch per second

.and is in direct contact with the integrated circuit

packages and power supplies.

' Liquld lmmerslon coolmg charactenstlcsj, ": L

o The key to d‘enseiy packed electron s .

- 200 galloh closed system
- Room temperature cophng ranges

flammable

propertie:
o lghthermalstabmty; ~
s Hngh heat transfer capacuty



-

e

Cray Regeéfch, Inc.

i
:
i
H
i
i
H
:

=

S
= qu%\%w»%a
=

11



Module technology design

The CRAY-2 hardware is constructed of
synchronous networks of binary circuits. These
circuits are packaged in 320 pluggable modules,
each of which contains approximately 750
integrated circuit packages: Total integrated circuit
population in the system is approximately 240,000
chips, nearly 75,000 of which are memory.

The pluggable modules are three-dimensional
structures with an 8 x 8 x 12 array of circuit
packages. Eight printed circuit boards form the
module structure. Circuit interconnections are
made in all three dimensions within the module.
Each module measures 1 x 4 x 8 inches, weighs 2
pounds, consists of approximately 40% integrated
circuits by volume and consumes 300 to 500 watts
of power.

The CRAY-2 Common Memory consists of 128
memory banks with two million words per bank.
Each memory bank occupies a circuit module.

CRAY-2 logic networks are constructed of 16-gate
array integrated circuits packaged in
three-dimensional structures.

12



CRAY-2 reliability

A notable increase in reliability is another benefit of
the immersion cooling technology. All components
rapidly dissipate heat to the fluid, thus preventing
high chip temperatures. These chip temperatures
are substantially fower than those achieved by other
types of cooling and result in significantly reduced
chip failure rates. Efficient heat dissipation also
prevents destructive thermal shocks that might
result from large temperature differentials and
fluctuations.

In addition, a fifteen-to-one decrease in moduie
count per CPU from the CRAY-1 and a ten-to-one
reduction in memory module count enhance failure
isolation, producing a corresponding increase in
maintenance efficiency.

CRAY -2 maintenance

{f a module should fail, effective and timely
maintenance is a routine operation. Diagnostic
software quickly isolates the problem to the failing
module. The immersion fluid is quickly pumped into
the reservoir adjacent to the mainframe. The front
panel is easily removed for ready access to the
module, which can then be replaced. The front
panelis then reinstalled and the fluid quickly
returned to the mainframe. The entire operation
requires-only a few minutes. Once the system is
restarted, further diagnosis and repair of the faulty
module can occur on site.

Cray Research, Inc.

13



CRAY-2 software

Cray Research has made a major commitment to
the development of a comprehensive and useful
user environment through an aggressive software
development program.

The CRAY-2 Computer System comes with
state-of-the-art software including an operating
system based on AT&T UNIX System V, an
automatic vectorizing FORTRAN compiler, a
comprehensive set of utilities and libraries and a C
language compiler. The software has extensive
development objectives beyond initial deliveries,
including expanded networking capabilities and
application program migration.

The choice of an operating system based on UNIX
provides the CRAY-2 user with a well-defined
program development environment joined with the
advanced computational power of the CRAY-2. The
user can access the power of the system through
the FORTRAN compiler (CFT) and the optimizing
library routines. CFT is a proven compiler that
performs automatic vectorization and will conform
to the ANSI X3.9-1978 FORTRAN 77 standard.

CRAY-2 Operating System

The CRAY-2 Operating System is based on UNIX
System V, an operating system developed by AT&T
Bell Laboratories. In recent years, versions of UNIX
have become available on many different computer
systems. UNIX is written in a high-level language
called C and contains a kernel and a large, diverse
set of utilities and library programs.

The kernel is the heart of the system. Ithas a simple,
well-constructed and clean structure with shortand
efficient software control paths. It supports a small
number of system call primitives that library and
application programs can use together to perform
more complex tasks. The kernel is
procedure-oriented, encompassing many
processes that dynamically share a common data
area used to control the operation of the CRAY-2
system. The system is oriented towards an
interactive environment with a hierarchical file
structure. This structure features directories, user
ownership and file protection/privacy.

The kernel of the CRAY-2 Operating System has
been substantially enhanced in the areas of I/O
processing and in the efficient use of very large
data files. Other significant enhancements include
support for asynchronous 1/0, improved file system
reliability, multiprocessing and user multitasking.

Users may initiate asynchronous processes o
communicate with one another and to pass data
between them. A variety of command structures
(shells) are possible. The CRAY-2 Operating
System offers a standard shell; others may be
created to provide different command interfaces for
the users. A batch processing capability is provided
for efficient use of the system by large, long-running
jobs.

The operating system supports high-level
languages (including FORTRAN and C) and the
mechanism to deliver a common operating system
environment across a variety of interconnected
computer systems. It delivers the ultimate in
computational performance possible on the
CRAY-2.

14




CRAY-2 FORTRAN Compiler and

Libraries

The CRAY-2 FORTRAN compiler, CFT Version 2, is
based on CFT, the highly successful CRAY-1
compiler that was the first in the industry to
automatically vectorize codes.

CFT Version 2 automatically vectorizes inner
DO-loops, provides normal program optimization
and exploits many of the unique features of the
CRAY-2 architecture. It does this without sacrificing
high compilation rates.

The compiler and FORTRAN library offer current
Cray customers a high level of source code

‘compatibility by making available FORTRAN

extensions, compiler directives and library
interfaces available on other Cray Research
products.

The FORTRAN library and a library of highly
optimized scientific subroutines enable the user to
take maximum advantage of the architecture of the
hardware. The /O library provides the FORTRAN
user with-convenient and efficient use of external
devices at maximum data rates for large files.

Mulititasking

Multitasking is a feature that allows two or more
parts of a program to be executed in parallel. This
results in substantial throughput improvements
over serially executed programs. The performance
improvements are in proportion to the number of
tasks that can be constructed for the program and
the number of Background Processors that can be
applied to these separate tasks.

In conjunction with vectorization and large memory
support, a flexible multitasking capability provides
a major performance step in large-scale scientific
computing. The user interface to the CRAY-2
multitasking capability is a set of
FORTRAN-callable library routines that are
compatible with similar routines available on other
Cray products.

- Mmtltasklng l:brary

C Language

The C programming language is a high-level
language used extensively in the creation of the
CRAY-2 Operating System and the majority of the
utility programs that comprise the system. Itis a
modern computer language that is available on
processors ranging from microcomputers to
mainframe computers and now to Cray computers.
C is useful for a wide range of applications and
system-oriented programs. The availability of C
complements the scientific orientation of FORTRAN.

Utilities

A useful and appropriate set of software tools assist
both interactive and batch users in the efficient use

of the system. Operational support facilities enable

proper management of the system.

CAL

The CRAY-2 Assembler, CAL Version 2, provides a
powerful macro assembly language that allows the
user to take advantage of all CRAY-2 instructions,
while using an instruction syntax and macro
capability that is similar to the CRAY-1 assembler.

Cray Research, Inc.

15



Applications

The CRAY-2 Computer System provides balanced

performance for computationally intensive
large-scale applications. Generating solutions to
many important problem classes depends heavily
on the number of data points that can be
considered and the number of computations that
can be performed. The CRAY-2 provides
substantial increases over its predecessors with
respect both to the number of data points and the
computation rate. Researchers and engineers
realistically can apply the CRAY-2 to problems
previously considered computationally intractable,
aswell as solving more commonpiace problems
faster and with greater accuracy.

One such application is the simulation of physical
phenomena — the analysis and prediction of the
behavior of physical systems through computer
modeling. Such simulation is common in weather
forecasting, aircraft and automotive design, energy
research, geophysical research and seismic
analysis. The CRAY-2 opens the door to true
three-dimensional simulation in a wide variety of
problem domains. The CRAY-2 also offers a
chalienging opportunity for new solutions to
applications in such fields as genetic engineering,
artificial intelligence, quantum chemistry and
economic modeling.

The CRAY-2 offers dramatic improvements in
throughput via the balanced exploitation of large
memory, fast vector and scalar computation rates
and multiprocessing. Problems with previously

prohibitive /0 requirements can now fitin memory.

Vectorization and multiprocessing promote very
high.computation rates. In practical terms, this
means that problems previously considered
large-scale become medium- or even small-scale
on the CRAY-2. And problems previously
considered unsolvable or too costly to solve
become solvable and economically feasible with
the CRAY-2.

16




Offering advanced architecture, advanced technology and advanced
software, the CRAY-2 clearly leads the industry in large-scale computing.
The CRAY-2 leads in technology by offering the fastest processor clock
cycle (4.1 nanoseconds), the largest memory (256 million words) and four
vector and scalar multiprocessing Background Processors. The CRAY-2
leads the industry in computer architecture by applying the fastest or most
dense components available and packaging them in three-dimensional
modules immersed in liquid coolant. The CRAY-2 leads the industry in
software by converting an industry recognized and accepted operating
system and tailoring it to the needs of large-scale computers, by providing
a FORTRAN compiler that automatically takes advantage of the system
architecture and by offering extensions available to the operating systems
that promote efficient use of the system.

About Cray Research, inc.

Cray Research, Inc. was organized in 1972 by Seymour R. Cray, a leading
designer of large-scale scientific computers, and by a small group of
associates experienced in the computer industry. The company was
formed to design, develop, manufacture and market large-capacity,
high-speed computers. The first mode! produced was the CRAY-1
Computer System.

Mr. Cray has been a leading architect of large scientific computers for
more than 25 years. From 1957 to 1968, he served as a director of Control
Data Corporation (CDC) and was a senior vice president at the time of his
resignation in early 1972. in that time, he was the principal architect in the
design and deveiopment of the CDC 1604, 6600 and 7600 Computer
Systems. Prior to his association with CDC, Mr. Cray was employed at the
Univac Division of Sperry Rand Corporation and its predecessor
companies, Engineering Research Associates and Remington Rand. Mr.
Cray has been the principal designer and developer of both the CRAY-1
and the CRAY-2 Computer Systems.

Today, Cray Research is the world leader in supercomputers, with over
100 CRAY-1 and CRAY X-MP systems instailed worldwide. The company
employs nearly 2500 people and operates manufacturing, research,
development and administrative facilities in Chippewa Falls, Wisconsin
and the Minneapolis, Minnesota area. The company has sixteen domestic
sales and support offices and eight subsidiary operations in Western
Europe, Canada and Japan.




RESEARCH, INC.
Corporate Headquarters
608 Second Avenue South
Minneapolis, MN 55402
612/333-5889

MP-0201 ; ‘
©1985, Cray Research,inc.

i

The equipment specifications contained inthis brochure and the availability of saidébﬂipm‘ent are subjectto change without notice.

Domestic sales offices

Albuquergue, New Mexico
Atlanta, Georgia
Beltsville, Maryland
Boston, Massachusetts -
Boulder, Colorado
Chicago, lllinois

Dallas, Texas

Dearborn, Michigan
Houston, Texas

Laurel, Maryland

Los Angeles, California
Minneapolis, Minnesota
Pittsburgh, Pennsylvania
Pleasanton, California

“Seattle, Washington

Tampa, Florida
Tulsa, Oklahoma

For the latestiinformation, contact your local Cray Research sales office.

CRAY-1.isaregisteredtrademark,and CRAY X—MP‘ké‘hd CRAY-2aretrademarks of Cray Research; Inc. .

UNIX is-a trademark of AT&T Beli Laboratories.

International subsidiaries

"Cray _Caﬁadé Inc.

Toronto, Canada

Cray Research France, 5.A.
Paris, France ‘

Cray Research GmbH
Munich, West Germany

Créy Research Japan, Limited
Tokyo, Japan

‘Cray Research (UK) Limited

Bracknell, Berkshire, UK

Y




"~ TheCRA
Series of Computer

3
-
L
e
*’é;,% e
.

S
-

ey
SRe
&

o
=

.
S

.

o
o
-

o

c

o

-

-

-

o
=
=
.
e
.
e

S
G
o

i




Cray Research’s mission is to develop and market the most powerful
computer systems available. Cray Research has been the industry leader
in large-scale computer systems for more than a decade. Today, the
majority of supercomputers instalied worldwide are Cray systems. These
systems are used in advanced research laboratories around the world
and have gained strong acceptance in diverse government and industrial
environments. No other manufacturer has Cray Research’s breadth of
success and experience in supercomputer development.

The company’s initial product, the CRAY-1 computer system, was first
installed in 1976. The CRAY-1 computer quickly established itself as the
standard for large-scale computer systems and was soon recognized as
the first commercially successful vector pracessor. Previously, the potential
advantages of vector processing had been understood, but effective
practical implementation had eluded computer architects. The CRAY-1
computer system broke that barrier and today vectorization techniques are
used commonly by scientists and engineers in a wide variety of disciplines.

With its significant innovations in architecture and technology, the CRAY-2
series of computer systems sets the standard for the next generation of
supercomputers. The large memory and high performance of the CRAY-2
series allow users to solve problems in many areas of science, engineering,
and mathematical modeling that.cannot be solved with any other computer.



Introducing the CRAY-2

series of computer systems

The CRAY-2 series of computer systems sets the
standard for the next generation of supercom-
puters. Each of the four models of the CRAY-2
series is characterized by a large common
memory, two or four background processors, a
clock cycle of 4.1 nanoseconds (4.1 billionths of
a second), and liquid immersion cooling. The
CRAY-2 systems offer effective throughput up to
twelve times that of the CRAY-1 computer system
and run an operating system based on the in-
creasingly popular UNIX operating system.

The CRAY-2 computer systems use the most
advanced technology available. The compact
CRAY-2 mainframe is immersed in a fluorocarbon
liquid that dissipates the heat generated by the
densely packed electronic components. The logic
and memory circuits are contained in eight-layer,
three-dimensional modules. Both logic and
memory circuits are constructed of high-density,
high-speed silicon chips.

The CRAY-2 mainframe contains either two or four
independent background processors, each more
powerful than a CRAY-1 computer. Featuring a
clock cycle time of 4.1 nanoseconds — faster
than any other computer system available —
each of these processors offers exceptional
scalar and vector processing capabilities. The
background processors can operate independ-
ently on separate jobs or concurrently on a
single problem. The high-speed local memory
integral to each background processor is
available for temporary storage of vector and
scalar data.

Common memory is one of the most important
features of the CRAY-2 series. It consists of up to
256 million 64-bit words, randomly accessible
from any of the background processors and from
any of the high-speed and common data
channels. Common memory is arranged in 64 or
128 interleaved banks, divided evenly among four
quadrants. All memory access is performed
automatically by the hardware. Any user may

use all or part of this memory.




In conventional memory-limited computer
systems, 1/0 wait times for large problems that
use out-of-memory storage run into hours. The
large common memory of the CRAY-2 computer
systems enables many of these problems to be
handled in a fraction of the time.

Cray Research offers high-speed disk drives and
tape support to accommodate user mass storage
needs. Hardware interface support allows CRAY-2
systems to be connected to a wide variety of
front-end systems and external networks.

Control of network access equipment and high-
speed disk and tape drives is integral to the
CRAY-2 mainframe hardware. A single foreground
processor coordinates the data flow between the
system common memory and all external devices
across high-speed 1/O channels. The
synchronous operation of the foreground
processor with the background processors and
the external devices provides a significant
increase in data throughput.

To complement the CRAY-2 architecture, Cray
Research has developed an interactive operating
system, UNICOS, based on AT&I's UNIX System
V operating system. UNICOS is supported by ftwo
Fortran compilers: CFT2, which is based on CFT,
the field-proven Cray Research Fortran compiler;
and CFT77, which represents the leading edge in
compiler development.

The CRAY-2 computer systems represent a major
advance in large-scale computing. The combi-
nation of two or four high-speed background
processors, a high-speed local memory, a huge
common memory, an extremely powerful 1/O
capability, and a comprehensive software product
offers unsurpassed and balanced performance
for the user.




Sample CRAY-2 four-processor system configuration

%2 g =

- -
o

L

-

S

=

-

- =

i

.»m.vw. . S
o -

-

e

-

s

i

.
-

=
S

o -
e o

0

i
A

e e

e

=

e .
- =
-

- o

e

-

e =

o o

- . =

Network adapter

= e T
]

[

-

s

=
-
o

A

y




The CRAY-2 computer systems

The CRAY-2 systems are available in four different
models that allow users to tailor the system to
meet specific needs.

The original CRAY-2 computer system with four
background processors and 256 million words of
common memory has been upgraded with a
faster dynamic random-access memory (DRAM)
chip and with pseudobanking, which allows faster
memory access and reduces interprocessor
memory contention.

An even faster memory CRAY-2 model combines
four processors with 128 million words of static

random-access memory (SRAM). The faster chip
cycle time and the elimination of the need for
refreshing memory improves typical throughput
on this model by 15 to 25 percent over compar-
able DRAM CRAY-2 systems.

For users requiring less total throughput, two-
processor CRAY-2 systems are available with 64
or 128 million words of SRAM common memory.
These systems offer the same per-processor
throughput as the four-processor SRAM CRAY-2
system at a reduced cost.




Physical characteristics

The CRAY-2 mainframe is elegant in appearance
as well as in architecture. The memory, computer
logic, and DC power supplies are integrated into
a compact mainframe composed of 14 vertical
columns arranged in a 300° arc.

The upper part of each column contains a stack
of 24 modules and the lower part contains power
supplies for the system. Total cabinet height, in-
cluding the power supplies, is 45 inches, and the
diameter of the mainframe is 53 inches. Thus, the
“footprint’’ of the mainframe is 16 square feet of
floor space.

An inert fluorocarbon liquid circulates in the
mainframe cabinet in direct contact with the in-
tegrated circuit packages and power supplies.
This liquid immersion cooling technology allows
for the small size of the CRAY-2 mainframe.

= FRAY




Architecture and design

In addition to the cooling technology, the CRAY-2
computer systems’ extremely high processing
rates are achieved by a balanced integration of
scalar and vector capabilities and a large com-
mon memory in a multiprocessing environment.

The significant architectural components of the
CRAY-2 computer systems include either two or
four identical background processors, up to 256
million 64-bit words of common memory, a fore-
ground processor, and a maintenance control
console.

Each background processor contains registers
and functional units to perform both vector and
scalar operations. The single foreground proces-
sor supervises the background processors, while
the large common memory complements the
processors and provides architectural balance,
thus assuring extremely high throughput rates.

On-site maintenance is performed via the main-
tenance control console.

Background processors

Each background processor consists of a
computation section, a control section, and

a high-speed local memory. The computation
section performs arithmetic and logical calcula-
tions. These operations and the other functions of
a background processor are coordinated through
the control section. Local memory is used to
temporarily store scalar and vector data during
computations. Each local memory is 16,384 64-bit
words.

Control and data paths for one background
processor are shown in the block diagram

(opposite page).

Computation section

The computation section contains registers and

functional units that are associated with address,
scalar, and vector processing. Two integer arith-
metic functional units are employed in address

processing. Three functional units are dedicated
solely to scalar processing, and two floating point
functional units are shared with vector operations.
Two functional units are dedicated to vector oper-
ations, and allow CRAY-2 systems to issue one
result per clock period in vector mode.




ion

izat

CRAY-2 four-processor system organ

-
.

-

Vector functional units.

Fioating point functional units

Scalar functional units

Address functional units

Vector registers

Foreground

External devices

Vector control
Scalar registers

Address registers

Vector control

R A




Local memory

Each background processor contains 16,384
64-bit words of local memory. Local memory is
treated as a register file to hold scalar operands
during computation. It may also be used for
temporary storage of vector segments where
these segments are used more than once in a
computation. Local memory accesses take four
clock periods, and can overlap accesses to
common memory. CRAY-2 local memory replaces
the B and T registers on the CRAY-1 computer
and is readily available to perform user tasks,
such as small matrix manipulation.

Control section

Each background processor contains an identical
independent control section of registers and in-
struction buffers for instruction issue and control.

Each background processor has a 64-bit real-
time clock. These clocks and the foreground
processor 32-bit real-time clock are synchronized
at system start-up and are advanced by one
count in each clock period.

Background processor intercommunication
Synchronization of two or more background
processors cooperating on a single job is
achieved through use of one of the eight Sema-
phore flags shared by the background proces-
sors. These flags are one-bit registers providing
interlocks for common access to shared memory
fields. A background processor is assigned
access to one Semaphore flag by a field in the
Status register. The background processor has
instructions to test and branch, set and clear a
Semaphore flag.




Common memory

One of the primary technological advantages of
the CRAY-2 computer systems is their extremely
large directly addressable common memories.
The CRAY-2 series of computer systems offers up
{0 256 million words of common memory, the
largest of any commercially availabie computer
system. Such a large common memory allows
the individual user to run programs that would be
impractical to run on any other system; it also
enhances multiprogramming by allowing more
than an order of magnitude increase in the
number of jobs that can reside concurrently in
memory (that is, that can be multiprogrammed).
Common memory is arranged in four quadrants
of 16 or 32 banks each, for a total of 64 or 128
interleaved banks, depending on model. Pseudo-
banking improves throughput on the DRAM system
by effectively reducing wait times and conflicts.

Memory on the CRAY-2 computer systems is
composed of either static or dynamic random-
access memory (SRAM or DRAM) metal oxide
semiconductor (MOS) chips. The DRAM system
is available with 256 million words of common
memory. The SRAM systems, with 64 or

128 million words of common memory, show
performance improvements of 10 to 40 percent
over comparable DRAM systems for two
reasons: the faster raw chip speed, and the
reduced memory contention that SRAM provides.

Foreground processor
and 1/O processors

For problems requiring extensive data handling,
Cray Research has developed hardware that
ensures that the computing power of the CRAY-2
systems is not held captive by 1/O limitations.

The foreground processor supervises overall
system activity among the foreground processor,
background processors, common memory, and
peripheral controllers. System communication
occurs through two or four high-speed syn-
chronous data channels.

Firmware control programs for normal system
operation and a set of diagnostic routines for
system maintenance are integral to the fore-
ground processor.

Control circuitry for external devices is also
located within the CRAY-2 mainframe.

Foreground communication channels

The foreground processor is connected to either
two or four 4-Gbit/sec communication channels.
These channels link the background processors,
foreground processor, peripheral controllers, and
common memory. Each channel connects one
background processor, one group of peripheral
controllers, one common memory port, and the
foreground processor, Data traffic travels directly
between controllers and common memory.

R ANY




Disk drives

Complementing and balancing CRAY-2 com-
puting speeds are the DD-49 disk drives,
high-density (1200-Mbyte) magnetic storage
devices. A maximum of 36 disk drives can be
configured on four-processor systems and 18 on
two-processor models. These disks can sustain
transfer rates of 9.6 Mbytes/sec at the user job
level with an average seek time of 16 msec.

Effective disk transfer rates can be increased
further by the use of optional disk striping tech-
niques. When specified, striping causes system
software to distribute a single user file across two
or more drives. Successive disk blocks are allo-
cated cyclically across the drives and consecutive
blocks can thus be accessed in parallel. The
resultant /0 performance improvements are in
proportion to the number of disk drives used.

Cray Tape Controller (CTC)

The optional Cray Tape Controller (CTC) enables
a CRAY-2 system to interconnect with one or
more IBM 3480 Magnetic Tape Subsystems,
The CIC is based on VMEbus hardware and
interfaces to the CRAY-2 system through a
12-Mbyte/sec channel. Using the CTC, the CRAY-2
system can provide up to four IBM-compatible
tape streaming channels. Up to eight tape
streaming channels can be configured on a
two-processor CTC model and up to 16 on a
four-processor CTC model. The CTC can be
separated from the CRAY-2 system by up to 50
feet and from the 1BM tape controller by up to
400 feet.

The IBM 3480 Magnetic Tape Subsystem uses
200-Mbyte tape cartridges and can sustain a
data transfer rate {reading and writing) of 2.5
Mbytes/sec when configured on a CRAY-2
system. A CTC with two streaming channels can
sustain an aggregate data transfer rate (reading
and writing) of up to 5 Mbytes/sec.

Front-end interfaces

CRAY-2 computer systems may be interfaced to a
variety of front-end computer systems. Up to 16
front-end interfaces can be accommodated in a
point-to-point configuration. An unlimited number
of systems can be connected to the CRAY-2 sys-
tem using commercially available bus networks.

Cray Research currently provides front-end inter-
face support for IBM, CDC, and DEC systems.
Front-end interfaces compensate for differences
in channel widths, word size, logic levels, and
control protocols between other manufacturers’
equipment and a CRAY-2 computer system.

Fiber optic link

Cray Research'’s fiber optic link allows a front-
end interface to be separated from a CRAY-2
computer system by distances up to 621 miles
(1000 meters) and provides complete electrical
separation of the connected devices.

HSX-1 high-speed external channel

The HSX-1, a special high-speed external
communications channel, is also available for
interfacing very fast devices to a CRAY-2 com-
puter system. The HSX-1 provides full duplex
point-to-point communication at rates up to 100
Mbytes/sec over distances of up to 70 feet (22
meters). The HSX-1 can be used to connect mul-
tiple CRAY-2 systems and to connect a CRAY-2
system with a CRAY X-MP system. High-speed
graphics support is another example of how this
channel can be used.

10




S

11



CRAY-2 technology

Technological innovations on the CRAY-2
computer systems include liquid immersion
cooling and eight-layer, three-dimensional
modules.

Liquid immersion cooling

Effective cooling techniques are central 1o the
design of high-speed computational systems.
Densely packed components result in shorter
signal paths, thus contributing to higher speeds.
Traditionally, the tradeoff has been lower reliability
due to increased operating temperatures, but this
is no longer a limitation. The liquid immersion
cooling technology used by the CRAY-2 computer
systems is a breakthrough in the design of
cooling systems for large-scale computers. It
places the cooling medium in direct contact with
the components to be cooled, thus efficiently
reducing and stabilizing the operating tempera-
ture and increasing system reliability. The coolant
flows through the module circuit boards at a
velocity of one inch per second and is in direct
contact with the integrated circuit packages and
power supplies.

The coolant used in the CRAY-2 systems is a
colorless, odorless, inert fluorocarbon fluid. 1t is
nontoxic and nonflammable and has high
dielectric (insulating) properties. It also has high
thermal stability and outstanding heat transfer
properties.

12



Module technology design

The CRAY-2 hardware is constructed of syn-
chronous networks of binary circuits. These cir-
cuits are packaged in up to 336 pluggable
modules, each of which contains approximately
750 integrated circuit packages. Total integrated
circuit population in the largest CRAY-2 system is
approximately 240,000 chips, nearly 75,000 of
which are memory.

The pluggable modules are three-dimensional
structures with an 8 x 8 x 12 array of circuit
packages. Eight printed circuit boards form the
module structure. Circuit interconnections are
made in all three dimensions within the module.
Each module measures 1 x 4 x 8 inches, weighs
2 pounds, consists of approximately 40 percent
integrated circuits by volume, and consumes 300
to 500 watts of power.

CRAY-2 common memory consists of either 64 or
128 memory banks with up to two million words
per bank; each memory bank occupies a circuit
module. CRAY-2 logic networks are constructed of
16-gate array integrated circuits packaged in
three-dimensional -structures.

Reliability

The immersion cooling technology used in the
CRAY-2 systems contributes significantly to system
reliability. All components rapidly dissipate heat to
the fluid, thus preventing high chip temperatures.
These chip temperatures are substantially lower
than those achieved by other types of cooling
and result in significantly reduced chip failure
rates. Efficient heat dissipation also prevents
destructive thermai shocks that might result from
large temperature differentials and fluctuations.

In addition, a fifteen-to-one decrease in module
count per CPU and a ten-to-one reduction in
memory module count from the CRAY-1 computer
system enhance failure isolation, producing a
corresponding increase in maintenance efficiency.

13



CBAYeZ softwgre

)

Cray Research has-made a major commitment
to the development of a comprehensive user
environment through an aggressive software
development program.

The CRAY-2 computer systems come with
state-of-the-art software including UNICOS, an
operating system based on AT&T UNIX System V.
UNICOS offers a widely accepted program
development environment joined with the
advanced computational power of the CRAY-2
computer systems.

Software includes a choice of two automatic
vectorizing Fortran compilers, C and Pascal
compilers, extensive Fortran and scientific library
routines, program- and file-management utilities,
debugging aids, a powerful Cray assembler
(CAL), and a wealth of third-party and public-
domain application codes.

CRAY-2 systems are also supported by commu-
nications software and hardware interfaces to
meet a variety of customer connectivity needs;
included are TCP/IP protocols, the popular choice
for interconnecting UNIX systems.

UNICOS operating system

The Cray operating system, UNICQOS, delivers the
full power of the hardware in either an interactive
or a batch environment. UNICOS efficiently
manages high-speed data transfers between the
CRAY-2 supercomputers and peripheral equip-
ment. Standard system software is also offered
for interfacing the CRAY-2 computer systems with
other vendors' operating systems and networks.
UNICOS includes a variety of utility programs
that assist in program development and
maintenance. User programs can be ported
easily between CRAY-2 systems and CRAY X-MP
computer systems or other UNIX systems.

UNICOS is based on UNIX System V, an
operating system developed by AT&T Bell
Laboratories. In recent years, versions of UNIX
have become available on-many different
computer systems. UNICOS is written in a high-

14



level language called C and contains a small
kernel that is accessed through system calls and
a large, diverse set of utilities and library
programs. Its file system is hierarchical, featuring
directories for -convenient organization of files
and a simple file model for convenience and
efficiency.

The kernel is the heart of the system. It has a
simple, well-constructed, and clean structure with
short and efficient control paths. It supports a
small number of system call primitives that library
and application programs can use together to
perform more complex tasks.

The kernel of UNICOS has been substantially
enhanced in the areas of I/O processing and in
the efficient use of very large data files. Other
significant enhancements include support for
asynchronous /O, improved file system reliability,
multiprocessing, and user multitasking.

The UNICOS system is oriented toward an
interactive environment. A batch processing
capability has been provided for efficient use of
the system by large, long-running jobs. UNICOS
batch processing capability is based on the
Network Queuing System (NQS), which allows
users to submit, terminate, monitor, and — within
limits — control batch jobs submitted to the
system. NQS supports multiple job classes based
on resource requirements, such as maximum
time limit and maximum memory required. The
standard UNIX process accounting features have
been augmented with accounting features more
appropriate for a supercomputer environment
requiring batch processing capabilities.

Users may initiate asynchronous processes that
can communicate with one another. A variety of
command-language interpreters (shells) are
possible. UNICOS offers the standard AT&T UNIX
Bourne shell and the University of California
Berkeley 4.2 BSD C shell. Other shells may be
created to provide different command interfaces
for users.

UNICOS supports high-level languages (including
Fortran, C, and Pascal). Cray Research has
adopted industry-standard protocols and an
industry-standard operating system in order to
offer users a generic environment across a wide
range of interconnected computer systems. The
result is a combination of flexibility and comput-
ing power unparalleled in the computer industry.

CRAY-2 Fortran compilers
and libraries

Cray Research offers two Fortran compilers for
the CRAY-2 computer systems: CFT Version 2
(CFT2) and CFT77. Both compilers offer a high
degree of automatic scalar and vector optimi-
zation. Both permit maximum portability of
programs between different Cray systems and
accept a number of nonstandard constructs
written for other vendors’ compilers. Vectorized
object code is produced from standard Fortran
code; users need not program nonstandard
vector syntax to use the full power of the CRAY-2
system architecture.

15



The CRAY-2 Fortran compiler, CFT2, is based on
CFT, the highly successful CRAY-1 compiler that
was the first in the industry to automatically
vectorize codes. CFT2 automatically vectorizes
inner DO-loops, provides program optimization,
and exploits many of the unique features of

the CRAY-2 architecture. It does this without
sacrificing high compilation rates. Later releases
of CFT2 will offer full ANSI 1978 compliance.

CFT77 is a state-of-the-art compiler that fully
complies with the ANS! 1978 standard. CFT77
generates highly vectorized and optimized code.
CFT77 also offers array syntax and portability to
the CRAY X-MP and future Cray systems.

The compilers and Fortran library offer current
Cray customers a high level of source code
compatibility by making available Fortran
extensions, compiler directives, and library
interfaces available- on other Cray Research
products.

The Fortran library and a library of highly
optimized scientific subroutines enable the user
to take maximum advantage of the hardware
architecture. The /O library provides the Fortran
user with convenient and efficient use of external
devices at maximum data rates for large files.

Multitasking

In conjunction with vectorization and large
memory support, a flexible multitasking capability
provides a major performance step in large-scale
scientific computing.

Multitasking is a technique whereby an
application program can be partitioned into
independent tasks that can execute in parallel
on a CRAY-2 computer system. This results in
substantial throughput improvements over serially
executed programs. The performance improve-
ments are in proportion to the number of tasks
that can be constructed for the program and the
number of background processors that can be
applied to these separate tasks.

Two methods can be used: macrotasking and
microtasking. Macrotasking, which is available on
CRAY-2 systems today, is best suited to programs
with larger, longer-running tasks. The user inter-
face to the CRAY-2 macrotasking capability is a
set of Fortran-callable subroutines that explicitly
define and synchronize tasks at the subroutine
level. These subroutines are compatible with
similar routines available on other Cray products.

Microtasking, the second method for multitasking,
is under development for the CRAY-2 systems.
Microtasking is available on the CRAY X-MP
systems today and has proven to be a very
effective parallel processing tool. Even short-
duration tasks that can be multiprocessed have
shown improved performance using microtasking.

Later releases of CFT77 will also provide for
automatic multitasking.

16



C language

The C programming language is a high-level
language used extensively in the creation of the
UNICOS operating system and the majority of the
utility programs that comprise the system. It is a
modern computer language that is available on
processors ranging from microcomputers to
mainframe computers and now to Cray super-
computers. C is useful for a wide range of
applications and system-oriented programs.

The availability of C complements the scientific
orientation of Fortran. An automatic vectorizing
version of the C compiler is under development.

Pascal

Pascal is a high-level, general-purpose program-
ming language used as the implementation
language for the CFT77 compiler, the CAL
Version 2 assembler, and various Cray products.
Cray Pascal complies with the ISO Level 1
standard and offers such extensions to the
standard as separate compilation of modules,
imported and exported variables, and an array
syntax.

The optimizing Cray Pascal compiler takes
advantage of CRAY-2 hardware features through
automatic vectorization of FOR loops, instruction
scheduling, and use of local memory. it provides
access to Fortran common block variables and
uses a common calling sequence that allows
Pascal code to call Fortran and CAL routines.

Utilities

A set of software tools assist both interactive and
batch users in the efficient use of the CRAY:2
systems.

A variety of debugging aids allow users to
detect program errors by examining both
running programs and program memory dumps.

Supported debugging aids include éymbolic
interactive debuggers and symbolic postmortem
dump interpreters.

Performance aids assist in analyzing program
performance and optlmizlng programs with a
minimum of effort.

A source code control system tracks modifi-
cations to files, which is useful when programs
and documentation undergo frequent changes
due to development, maintenance, or enhance-
ment. And a variety of text editors offer versatility
for users wishing to create and maintain text files.
Operational support facilities enable proper
management of the system.

A set of migration tools have been created to
simplify conversion of Fortran code, datasets, and
JCL commands from the Cray Research
Operating System (COS) to UNICOS on the
CRAY-2 systems.

Included with each release are on-line docu-
mentation and help facilities for quick reference
of information.

CAL

The CRAY-2 Assembler, CAL Version 2, provides
a powerful macro assembly language that is
especially helpful for tailoring programs to the
architecture of the CRAY-2 systems and for writing
programs requiring hand-optimization to the
hardware. CAL for the CRAY-2 computer systems
uses an instruction syntax and macro capability
that is similar to the CRAY-1 assembiler.

=R AY

17



Connectivity

CRAY-2 systems are designed to be connected
easily to an existing customer computer environ-
ment. A major benefit of this connectivity is that
the end user has access to a considerably
greater computational resource while continuing
to work in a familiar computer environment.

Cray Research offers hardware interfaces that
connect a CRAY-2 system to a wide variety of
computers and workstations, including 1BM, CDC,
and DEC. Additionally, systems may be con-
nected with Network Systems Corporation
HYPERchanne! adapters or similar channel
adapters.

The TCP/IP networking suite is available on
CRAY-2 computer systems running UNICOS,
providing additional flexibility for integrating a
CRAY-2 system into an open network architecture.

Cray Research provides software interface
support for a variety of other vendors' systems
through station software. This station software
runs on a variety of systems or workstations and

| provides the logical connection to CRAY-2

computer systems running UNICOS. Standard
Cray station software is available for the following
systems: IBM MVS and VM, CDC NOS and
NOS/BE, DEC VAX/VMS, and a variety of
computers and workstations running UNIX. Thus,
the user can access a CRAY-2 system easily.
Data can be transferred between any supported
system and the CRAY-2 system. In many cases,
data conversion and reformatting are handled
automatically by software. The user can work
interactively on a CRAY-2 system for processing
and have results returned to the originating
system or optionally to a different system.

CRAY:2 systems are supported by communi-
cations software and hardware interfaces to meet
a variety of customer needs. They can readily
join existing environments as partners in a multi-
vendor computing facility.

18



Applications

The CRAY-2 computer systems provide balanced
performance for computationally intensive large-
scale applications. Over 400 application pro-
grams are available for Cray systems, and many
of these are available on the CRAY-2 systems
today. Conversion of additional application
programs for use on CRAY-2 systems is an
ongoing effort.

Generating solutions to many important problem
classes depends heavily on the number of data
points that can be considered and the number of
computations that can be performed. The CRAY-2
computer systems provide substantial increases
over their predecessors with respect to the
number of data points that can be handled.
Researchers and engineers realistically can apply
CRAY-2 computer systems to problems previously
considered computationally intractable, as well as
solving more commonplace problems faster and
with greater accuracy.

One such application is the simulation of physical
phenomena — the analysis and prediction of the
behavior of physical systems through computer
modeling. Such simulation is common in weather
forecasting, aircraft and automotive design,
energy research, geophysical research, and
seismic analysis. The CRAY-2 computer systems
open the door to true three-dimensional
simulation in a wide variety of problem domains.
They also offer a challenging opportunity to find
new solutions to applications in such fields as
genetic engineering, artificial intelligence,
quantum chemistry, and economic modeling.

The CRAY-2 computer systems offer dramatic
improvements in throughput via the balanced
exploitation of large memory, fast vector and
scalar computation rates, and multiprocessing.
Problems with previously prohibitive /O
requirements can now fit in memory. Vectorization
and multiprocessing promote very high
computation rates. In practical terms, this means
that problems previously considered large-scale
become medium- or even small-scale on the
CRAY-2 computer systems. And problems
previously considered unsolvable or too costly to
solve become solvable and economically feasible.

Ry

19



Support and maintenance

20

Cray Research has developed a comprehensive
array of support services to meet customer
needs. From pre-installation site planning through
the life of the installation, ongoing -engineering
and system software support is provided locally
and through technical centers throughout the
company. Cray Research also provides
comprehensive documentation and offers
customer training on-site or at Cray training
facilities.

Cray Research has extensive experience serving
the supercomputer customer — over a decade of
experience spanning a wide variety of customers
and applications. Professional, responsive
support from trained specialists is just part of the
commitment that Cray Research makes to every
customer.

Cray Research recognizes the need for high
system reliability while maintaining a high level of
performance. The use of higher-density integrated
circuits and an overall higher level of component
integration teamed with liquid immersion cooling
enhances CRAY-2 system reliability. Components
used in CRAY-2 computer systems undergo strict
inspection and checkout prior to assembly into a
system. All CRAY-2 computer systems undergo
rigorous operational and reliability tests prior to
shipment.

Preventive maintenance techniques ensure that
system performance is high; effective and timely
maintenance is a routine operation. Diagnostic
software quickly isolates any problem that may
occur and the fluid coolant is quickly pumped
into the reservoir adjacent to the mainframe.
Once the repair is made, the front panel is
reinstalled and the fluid quickly returned to the
mainframe. The entire operation requires only

a few minutes.



Offering advanced architecture, advanced technology, and advanced
software, the CRAY-2 computer systems clearly lead the industry in large-
scale computing. The CRAY-2 computer systems offer the fastest processor
clock cycle (4.1 nanoseconds), the largest memory (up to 256 million
words), and two or four processors. Each processor will operate in scalar
and vector mode. The multiple processors may operate independently and
simultaneously on separate jobs for greater system throughput or may be
applied in any combination to operate jointly on a single job for better
program turnaround time. The CRAY-2 computer systems lead the industry
in computer architecture by using some of the fastest and most dense
components available packaged in three-dimensional modules immersed in
liquid coolant. The CRAY-2 computer systems offer a recognized and
accepted operating system tailored to the needs of large-scale computers.
Two Fortran compilers and a number of extensions to the operating system
automatically take advantage of the system architecture and promote
efficient use of the system.

About Cray Research

Cray Research, Inc. was organized in 1972 by Seymour R. Cray, a leading
designer of large-scale scientific computers, along with a small group of
computer industry associates. The company was formed to design,
develop, manufacture, and market large-capacity, high-speed computers.
The first model produced was the CRAY-1 computer system.

Mr. Cray has been a leading architect of large scientific computers for
more than 30 years. From 1957 to 1968, he served as a director of Control
Data Corporation (CDC) and was a senior vice president at the time of his
resignation in early 1972. At CDC, he was the principal architect in the
design and development of the CDC 1604, 6600, and 7600 computer
systems. Prior to his association with CDC, Mr. Cray was employed at

the Univac Division of Sperry Rand Corporation and its predecessor
companies, Engineering Research Associates and Remington Rand.

Mr. Cray has been the principal designer and developer of both the
CRAY-1 and CRAY-2 computer systems.

Today Cray Research is the world leader in supercomputers, with wel

over 175 supercomputers installed worldwide. The company operates

manufacturing, research, development, and administrative facilities in

Chippewa Falls, Wisconsin and the Minneapolis, Minnesota area. The
company has sales and support offices throughout North America and
subsidiary operations in Western Europe and the Far East.




RO

Corporate Headquarters
608 Second Avenue South
Minneapolis, MN 55402
612/333-5889

Telex: 4991729

CCMP-0201D
©7/87, Cray Research, Inc.

Domestic sales offices

Albuquerque, New Mexico
Atlanta, Georgia

Belisville, Maryland
Bernardsville, New Jersey
Boston, Massachusetts
Boulder, Colorado

Chicago, Hlinois

Cincinnati, Ohio

Colorado Springs, Colorado
Dallas, Texas

Darien, Connecticut
Detroit, Michigan

Houston, Texas

Huntington Beach, California
Huntsville, Alabama

Laurel, Maryland

Los Angeles, California

Minneapolis, Minnesota

Pittsburgh, Pennsyivania
Pleasanton, California
Seattle, Washington

St. Louis, Missouri
Sunnyvale, California
Tampa, Florida

_ International subsidiaries

Cray Asia/Pacific Inc.
Hong Kong

Cray Canada Inc.
Toronto, Canada

Cray Research France S.A.

Paris, France

Cray Research GmbH
Munich, West Germany

Cray Research Japan Limited
Tokyo, Japan

Cray Research S.R.L.
Milan, Italy

Cray Research (UK) Ltd.
Bracknell, Berkshire, UK

Tulsa, Oklahoma

The equxpment specifications contained:in this brochure and the availability of this.equipment are subject to change wnhout notice. For the iatest
information, contact your local Cray Research sales offlce

CRAY, CRAY-1,-and - UNICOS are registered trademarks and.CFT, CFT2, CFT77, COS, CRAY-2, and CRAY X-MP are trademarks of Cray Research, ‘inc.
UNIX is a registered trademark of AT&T. The UNICOS operating system is derived from the AT&T UNIX System V operating system. UNICOS is aiso
based, in-part, on-the Fourth-Berkeley Software Distribution under license from The Regents of the University of-California.

DEC, VAX, and VMS are trademarks of Digital Equipment ‘Corporation. HYPERchannel is a registered trademark of Network Systems Corporétion.
IBM is a registered trademark of International Business Machines Corporation; MVS and VM are products-of IBM. CDC is a registered trademark of
Control Data Corporation; NOS ‘and NOS/BE ‘are products of CDC.






